
www.manaraa.com



www.manaraa.com

Lecture Notes in Computer Science 4951
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



www.manaraa.com

Michael Luck Lin Padgham (Eds.)

Agent-Oriented
Software
Engineering VIII

8th International Workshop, AOSE 2007
Honolulu, HI, USA, May 14, 2007
Revised Selected Papers

13



www.manaraa.com

Volume Editors

Michael Luck
King’s College London, Department of Computer Science
Strand, London WC2R 2LS, UK
E-mail: michael.luck@kcl.ac.uk

Lin Padgham
RMIT University, School of Computer Science and Information Technology
Melbourne, VIC 3001, Australia
E-mail: lin.padgham@rmit.edu.au

Library of Congress Control Number: 2008925093

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-79487-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79487-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12262915 06/3180 5 4 3 2 1 0



www.manaraa.com

Preface

The concept of an agent as an autonomous system, capable of interacting with
other agents in order to satisy its design objectives, is a natural one for soft-
ware designers. Just as we can understand many systems as being composed of
essentially passive objects, which have state, and upon which we can perform
operations, so we can understand many others as being made up of interacting,
semi-autonomous agents. This paradigm is especially suited to complex systems.
Software architectures that contain many dynamically interacting components,
each with their own thread of control, and engaging in complex coordination pro-
tocols, are typically orders of magnitude more complex to correctly and efficiently
engineer than those that simply compute a function of some input through a sin-
gle thread of control, or through a limited set of stricly synchronized threads
of control. Agent-oriented modelling techniques are especially useful in such
applications.

Many current and emerging real-world applications—spanning scenarios as
diverse as worldwide computing, network enterprises, ubiquitous computing, sen-
sor networks, just to mention a few examples—have exactly the above charac-
teristics. As a consequence, agent-oriented software engineering has become an
important area: both as a design modelling tool, and as an interface to platforms
which include specialized infrastructure support for programming in terms of
semi-autonomous interacting processes. The workshop was aimed at providing
a forum for discussion and debate over just these concerns.

Building on the success of the seven previous workshops, the Eighth Inter-
national Workshop on Agent-Oriented Software Engineering (AOSE 2007) took
place in Honolulu in May 2007 as part of the Sixth International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS 2007). Papers
were reviewed by three members of an international Program Committee of 23
researchers and by 5 auxiliary reviewers.

This volume contains revised and improved versions of the papers presented
at the workshop, together with papers resulting from discussions on tools and
platforms. It is organized in four sections: methodology and processes; interacting
heterogeneous agents; system development issues; tools and case studies.

1 AOSE Methodology and Processes

The first section begins with a paper by Garcia-Ojeda et al., in which they
describe the organization-based multiagent system engineering (O-MaSE) pro-
cess framework that aims at helping process engineers create customized agent-
oriented software development processes. O-MaSE is built on the MaSE method-
ology and adapted from the OPEN Process Framework (OPF), which adopts a
method engineering approach to process construction. O-MaSE consists of three



www.manaraa.com

VI Preface

basic structures: a metamodel, which defines the key concepts needed to de-
sign and implement multiagent systems; a set of methods fragments, which are
operations or tasks that are executed to produce a set of work products, includ-
ing models, documents, or code; and a set of guidelines, which define how the
method fragments are related to each other. The work is illustrated by providing
examples of creating such custom O-MaSE processes.

Continuing the theme, in the second paper, Gonzalez-Palacios and Luck de-
scribe work on trying to gain acceptance in industrial environments, which they
argue is limited in part by drawbacks in current agent-oriented methodologies,
mainly in terms of applicability and comprehensiveness. For example, while the
Gaia methodology is based on organizational abstractions (which makes it suit-
able for the design of complex systems), and offers a simple and neutral method-
ological process that facilitates extensions, it neither considers agent design nor
offers an iterative methodological process. Gonzalez-Palacios and Luck describe
their efforts to address this by extending Gaia to include an agent design phase,
and an enhanced methodological process that uses iterations.

In the third paper, Miles et al. focus on the issue of making sure that software
designs include appropriate means for ensuring the quality of the processes in-
volved. While the products of systems cannot always be judged at face value, the
process by which they were obtained is also important. For instance, the rigor of
a scientific experiment, the ethics with which an item was manufactured and the
use of services with particular licensing all affect how the results of those pro-
cesses are valued. The issue of ensuring that users are able to check these process
qualities is a software engineering one: the developer must decide to ensure that
adequate data are recorded regarding processes and safeguards implemented to
ensure accuracy. Yet in situations in which there are multiple independent con-
tributory organizations, the ability of autonomous agents to choose how their
goals or responsibilities are achieved can hide such process qualities from users.
In response, Miles et al. introduce AgentPrIMe, an adjunct to existing agent-
oriented methodologies to allow system designs to be adapted so as to give users
confidence in the results they generate, through documentation, corroboration,
independent storage and accountability.

The next paper, by Morandini et al., addresses the problems arising from
system operation in complex, heterogeneous environments, with different sys-
tem users, each with different needs and preferences. They argue that software
engineering methodologies need to cope with the complexity of requirements
specification in such scenarios, where new requirements may emerge also at run-
time and the systems goals are expected to evolve to meet new stakeholder
needs. The proposed solution is to take an agent-oriented approach in the de-
velopment of methods and techniques for the design of adaptive and evolvable
information systems able to fulfill stakeholder objectives. Based on earlier work
on a framework for the design and code of system specifications in terms of
goal models, with a tool supported process that exploits the Tropos method-
ology JADE/Jadex, they describe how to develop a system using an iterative



www.manaraa.com

Preface VII

process, where the system execution allows the system specification to be en-
riched through goal models.

Finally, Nguyen et al. are concerned with a distinct aspect of software engi-
neering: testing. As complex distributed agent-oriented systems are increasingly
being applied in mission-critical services, assurances need to be given that they
operate properly. Although the relevance of the link between requirements en-
gineering and testing has long been understood, current AOSE methodologies
only partially address it. While some offer specification-based formal verification,
allowing software developers to correct errors at the start of the development pro-
cess, others exploit object-oriented testing techniques, mapping agent-oriented
abstractions into object constructs. However, a structured testing process for
AOSE methodologies that complements formal verification is still missing. In
response, Nguyen et al. introduce a testing framework for Tropos that includes
a testing process model complementing the agent-oriented requirements and de-
sign models and strengthening the mutual relationship between goal analysis and
testing. They argue that this framework provides a systematic way of deriving
test cases from goal analysis, termed goal-oriented testing.

2 Interacting Heterogeneous Agents

The second section is concerned with software engineering in the context of
interacting heterogeneous agents. As a prelude to the other papers in this section,
Dignum et al. introduce and discuss some key issues in relation to open agent
systems. In particular, if electronic institutions are Internet-based facilities in
which agents can interact, thus forming truly open agent systems, these agents
need to be able to determine whether an institution is one in which they can
participate. Their solution is to use a layered approach in which, starting with
a basic compatibility of message types, each extra layer ensures a higher degree
of compatibility, but also requires extra sophistication.

According to German and Sheremetov, in the second paper, interaction en-
gineering is a key issue in the effective construction of multi-agent systems,
requiring software abstractions, components and control structures to manage
interactions among agents and to improve infrastructures at runtime. In support
of these aims, they describe a framework for the automatic processing of interac-
tions generated using FIPA-ACL, and including three parts: an agent interaction
architecture to systematize interaction processing tasks; interaction models to
build reusable validated code for checking different phases of interaction process-
ing associated with message semantics; and components and control structures
for a particular agent platform. They also outline the implementation details
of the proposed approach within the CAPNET agent platform and illustrate it
with examples.

In a rather different vein, Bogdanovych et al. describe work on considering
virtual worlds as open multi-agent systems with a new 3D Electronic Institu-
tions methodology for their development. In this sense, 3D Electronic Institutions



www.manaraa.com

VIII Preface

are virtual worlds with normative regulation of interactions. The methodology
proposed helps to separate the development of such virtual worlds into two
independent phases: specification of the institutional rules; and design of the
3D interaction environment. It also offers a set of graphical tools that support
the development process at each stage from specification to deployment. The
resulting system facilitates the incorporation of humans into multi-agent systems
through participation as avatars in the 3D environment, and interacting with
other humans or software agents, while the institution ensures the validity of
their interactions.

3 System Development Issues

The third section of the book is concerned with agent systems development.
In the first paper, Asnar et al. consider the role of risk in safety-critical agent-
oriented applications. Currently, deliberation in agent architectures (particularly
BDI) does not include any form of risk analysis. In response, they propose guide-
lines for goal-risk reasoning in Tropos so that the overall set of possible plans
is evaluated with respect to risk. When the level of risk is too high, agents can
consider and introduce additional plans, called treatments, which produce an
overall reduction of risk, but may have side effects. Asnar et al. illustrate their
model with a case study on the Unmanned Aerial Vehicle agent.

The second paper, by Dam and Winikoff, deals with one of the most critical
problems in software maintenance and evolution, propagating changes. Although
many approaches have been proposed, automated change propagation is still
a significant technical challenge in software engineering. Their work provides
an agent-oriented change propagation framework based on fixing inconsistencies
when primary changes are made to design models. A core piece of the framework
is a new method for generating repair plans from OCL constraints that restrict
these models.

Finally, in the last paper of this section, Taveter and Sterling describe how
prototype systems can be efficiently created from agent-oriented domain and
design models, through a conceptual space that accommodates model transfor-
mations described by the model-driven architecture. They argue that the ap-
proach has the potential to further speed up and automate the process of fast
prototyping, complementing other agent-oriented approaches.

4 Tools and Case Studies

The last section of the book is concerned with tools and case studies. As is
indicated in the first paper, which functions as a brief introduction, this section
resulted from a call for alternative agent-oriented designs of a common system,
allowing for a more direct comparison between methodologies, and also from a
call for demonstrations of AOSE tools. The result is a set of papers that provides
a valuable resource for the community—namely, a set of designs using different
methodologies, for the well-known conference management system example.



www.manaraa.com

Preface IX

We believe that this volume provides a combination of cutting-edge research
papers in agent-oriented software engineering and an important reference for the
development and comparison of new and existing methodologies.

October 2007 Michael Luck
Lin Padgham



www.manaraa.com

Organization

Organizing Committee

Michael Luck (Co-chair)
Department of Computer Science
King’s College London, UK
E-mail: michael.luck@kcl.ac.uk

Lin Padgham (Co-chair)
School of CS and IT
RMIT University, Australia
E-mail: linpa@cs.rmit.edu.au

Steering Committee

Paolo Ciancarini, University of Bologna
Michael Wooldridge, University of Liverpool
Joerg Mueller, Siemens
Gerhard Weiss, Software Competence Center Hagenberg GmbH

Program Committee

Claudio Bartolini (USA)
Federico Bergenti (Italy)
Carole Bernon (France)
Giacomo Cabri (Italy)
Paolo Ciancarini (Italy)
Massimo Cossentino (Italy)
Keith Decker (USA)
Scott DeLoach (USA)
Klaus Fischer (Germany)
Paolo Giorgini (Italy)
Jorge Gomez Sanz (Spain)
Gaya Jayatilleke (Australia)

Juergen Lind (Germany)
Simon Miles (UK)
Haris Mouratidis (UK)
Andrea Omicini (Italy)
Juan Pavon (Spain)
Anna Perini (Italy)
Fariba Sadri (UK)
Arnon Sturm (Israel)
John Thangarajah (Australia)
Michael Winikoff (Australia)
Eric Yu (Canada)

Auxiliary Reviewers

James Atlas
Sachin Kamboj

Ambra Molesini Cu Nguyen
Alberto Siena



www.manaraa.com

Table of Contents

I AOSE Methodology and Processes

O-MaSE: A Customizable Approach to Developing Multiagent
Development Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby,
Walamitien H. Oyenan, and Jorge Valenzuela

Extending Gaia with Agent Design and Iterative Development . . . . . . . . . 16
Jorge Gonzalez-Palacios and Michael Luck

AgentPrIMe: Adapting MAS Designs to Build Confidence . . . . . . . . . . . . . 31
Simon Miles, Paul Groth, Steve Munroe, Michael Luck, and
Luc Moreau

Refining Goal Models by Evaluating System Behaviour . . . . . . . . . . . . . . . 44
Mirko Morandini, Loris Penserini, Anna Perini, and Angelo Susi

A Goal-Oriented Software Testing Methodology . . . . . . . . . . . . . . . . . . . . . . 58
Duy Cu Nguyen, Anna Perini, and Paolo Tonella

II Interacting Heterogeneous Agents

Open Agent Systems ??? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Frank Dignum, Virginia Dignum, John Thangarajah,
Lin Padgham, and Michael Winikoff

An Agent Framework for Processing FIPA-ACL Messages Based on
Interaction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Ernesto German and Leonid Sheremetov

A Methodology for Developing Multiagent Systems as 3D Electronic
Institutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Anton Bogdanovych, Marc Esteva, Simeon Simoff,
Carles Sierra, and Helmut Berger

III System Development Issues

Reasoning About Risk in Agent’s Deliberation Process: A Jadex
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Yudistira Asnar, Paolo Giorgini, and Nicola Zannone



www.manaraa.com

XIV Table of Contents

Generation of Repair Plans for Change Propagation . . . . . . . . . . . . . . . . . . 132
Khanh Hoa Dam and Michael Winikoff

An Expressway from Agent-Oriented Models to Prototypes . . . . . . . . . . . . 147
Kuldar Taveter and Leon Sterling

IV Tools and Case Studies

Introduction to AOSE Tools for the Conference Management System . . . 164
Lin Padgham and Michael Luck

Developing a Multiagent Conference Management System Using the
O-MaSE Process Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Scott A. DeLoach

Tool-Supported Development with Tropos: The Conference
Management System Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Mirko Morandini, Duy Cu Nguyen, Anna Perini,
Alberto Siena, and Angelo Susi

The Prometheus Design Tool – A Conference Management System
Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Lin Padgham, John Thangarajah, and Michael Winikoff

Developing a Conference Management System with the Multi-Agent
Systems Unified Process: A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Danilo Santos, Marcelo Blois Ribeiro, and Ricardo Bastos

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



www.manaraa.com

O-MaSE: A Customizable Approach to

Developing Multiagent Development Processes

Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby,
Walamitien H. Oyenan, and Jorge Valenzuela

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

{jgarciao,sdeloach,robby,oyenan,jvalenzu}@cis.ksu.edu

Abstract. This paper describes the Organization-based Multiagent
System Engineering (O-MaSE) Process Framework, which helps process
engineers define custom multiagent systems development processes.
O-MaSE builds off the MaSE methodology and is adapted from the
OPEN Process Framework (OPF). OPF implements a Method Engineer-
ing approach to process construction. The goal of O-MaSE is to allow
designers to create customized agent-oriented software development pro-
cesses. O-MaSE consists of three basic structures: (1) a metamodel, (2)
a set of methods fragments, and (3) a set of guidelines. The O-MaSE
metamodel defines the key concepts needed to design and implement
multiagent systems. The method fragments are operations or tasks that
are executed to produce a set of work products, which may include mod-
els, documents, or code. The guidelines define how the method fragments
are related to one another. The paper also shows two O-MaSE process
examples.

1 Introduction

The software industry is facing new challenges. Businesses today are demand-
ing applications that can operate autonomously, can adapt in response to dy-
namic environments, and can interact with other applications in order to provide
comprehensive solutions. Multiagent system (MAS) technology is a promising
approach to these new requirements [13]. Its central notion - the intelligent
agent - encapsulates all the characteristics (i.e., autonomy, proactive, reactivity,
and interactivity) required to fulfill the requirements demanded by these new
applications.

In order to develop these autonomous and adaptive systems, novel approaches
are needed. In the last several years, many new processes for developing MAS
have been proposed [1]; unfortunately, none of these processes have gained
widespread industrial acceptance. Reasons for this lack of acceptance include
the variety of approaches upon which these processes are based (i.e., object-
oriented, requirements engineering, and knowledge engineering) and the lack of
Computer Aided Software Engineering (CASE) tools that support the process
of software design. There have been some approaches suggested for increasing
the change of industry acceptance. For instance, Odell et al. suggest presenting

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

2 J.C. Garcia-Ojeda et al.

new techniques as an incremental extension of known and trusted methods [14],
while Bernon et al. suggest the integration of existing agent-oriented processes
into one highly defined process [3]. Although these suggestions may be helpful
in gaining industrial acceptance of agent-oriented techniques, we believe that
a more promising way is to provide more flexibility in the approaches offered.
The main problem with these approaches is that they do not provide assistance
to process engineers on how to extend or tailor these processes. In this vein,
Henderson-Sellers suggests the use of method engineering using a well-defined
and accepted metamodel in order to allow users to construct and to customize
their own processes that fit their particular approaches to systems development
[11]. Henderson-Sellers argues that by defining method fragments based on a
common underlying metamodel, new custom processes can be created that sup-
port user defined goals and preferences.

The goal of this paper is to present an overview of the Organization-based
Multiagent System Engineering (O-MaSE) Process Framework. The goal of the
O-MaSE Process Framework is to allow process engineers to construct custom
agent-oriented processes using a set of method fragments, all of which are based
on a common metamodel. To achieve this, we define O-MaSE in terms of a
metamodel, a set of method fragments, and a set of guidelines. The O-MaSE
metamodel defines a set of analysis, design, and implementation concepts and
a set of constraints between them. The method fragments define how a set of
analysis and design products may be created and used within O-MaSE. Finally,
guidelines define how the method fragment may be combined to create valid
O-MaSE processes, which we refer to as O-MaSE compliant processes.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground material on O-MaSE. Section 3 presents a brief overview of the O-MaSE
Process Framework as defined by the proposed metamodel, method fragments,
and guidelines. Section 4 presents examples of two O-MaSE-compliant processes
that can be used for developing a simulated cooperative robotic system. Finally,
Section 5 concludes and describes future work.

2 Background

One of the major problems faced by agent-oriented software engineering is the
failure to achieve a strong industry acceptance. One of the reasons hindering
this acceptance is a lack of an accepted process-oriented methodology for devel-
oping agent-based systems. An interesting solution to this problem is the use
of approaches that allow us to customize processes based on different types of
applications and development environments. One technique that provides such
an approach for the construction of tailored methods is Method Engineering [5].

Method Engineering is an approach by which process engineers construct pro-
cesses (i.e., methodologies) from a set of method fragments instead of trying to
modify a single monolithic, “one-size-fits-all” process. These fragments are gen-
erally identified by analyzing these “one-size-fits-all” processes and extracting
useful tasks and techniques. The fragments are then redefined in terms of a



www.manaraa.com

O-MaSE 3

common metamodel and are stored in a repository for later use. To create a
new process, a process engineer selects appropriate method fragments from the
repository and assembles them into a complete process based on project require-
ments [5]. However, the application of Method Engineering in the development
of agent-oriented applications is non-trivial. Specifically, there is no consensus
on the common elements of multiagent systems. Thus, it is has been suggested
that prior to developing a set of method fragments, a well-defined metamodel of
common agent-oriented that are typical of most varieties of MAS (e.g., adaptive,
competitive, self-organizing, etc.) should be developed [4].

Fortunately, we can leverage the OPEN Process Framework (OPF), which
provides an industry-standard approach for applying Method Engineering to
the production of custom processes [9]. The OPF uses an integrated metamodel-
based framework that allows designers to select method fragments from a repos-
itory and to construct a custom process using identified construction and tailor-
ing guidelines. This metamodel-based framework is supported by a three-layer
schema as shown in Fig. 1. The M2 layer includes the OPF metamodel, which
is a generic process metamodel defining the types of method fragments that
can be used in M1. Thus a process (such as OPEN) can be created in M1 by
instantiating method fragments from the M2 metamodel.

Fig. 1. OPEN Process Framework (adapted from [12])

The OPF metamodel consists of Stages, Work Units (Activities, Tasks, and
Techniques), Producers, Work Products, and Languages. A Stage is defined as
a “formally identified and managed duration within the process or a point in
time at which some achievement is recognized” [9, pp. 55]. Stages are used to
organize Work Units, which are defined as operations that are carried out by a
Producer. There are three kinds of Work Units in OPF: Activities, Tasks, and
Techniques. Activities are a collection of Tasks. Tasks are small jobs performed
by one or more Producers. Techniques are detailed approaches to carrying out



www.manaraa.com

4 J.C. Garcia-Ojeda et al.

various Tasks. Producers use Techniques to create, evaluate, iterate, and main-
tain Work Products. Work Products are pieces of information or physical entities
produced (i.e., application, document, model, diagram, or code) and serve as the
inputs to and the outputs of Work Units. Work Products are documented in ap-
propriate Languages. The M1 layer serves as a repository of method fragments
instantiated from the M2 metamodel. A set of rules governing the relationship
between these concepts (i.e., a process-specific metamodel and a set of reusable
method fragments) is also defined in M1. Basically, the process engineer uses the
guidelines to extend, to instantiate, and to tailor the predefined method frag-
ments for creating a custom process in the M1 layer. These custom processes are
then instantiated at the M0 level on specific projects; the actual custom process
as enacted on a specific project is termed a process instance.

Alternatively, the FIPA (Foundation for Physical Agents) Technical Commit-
tee (TC) methodology group is working on defining reusable method fragments
in order to allow designers to specify custom agent-oriented processes [17]. Al-
though this approach is quite similar to OPF (they are both based on method en-
gineering), its metamodel is derived from the Object Management Group (OMG)
Software Process Engineering Metamodel (SPEM). SPEM is based on three basic
process elements that encapsulate the main features of any development process:
Activities, Process Roles, and Work Products. Development processes are assem-
bled from a set of SPEM Activities, which represent tasks that must be done. An
Activity is essentially equivalent to an OPF Work Unit and is performed by one
or more Process Roles (which corresponds to OPF Producers). Process Roles
carry out the Activities in order to produce Work Products (the same term is
used here by SPEM and OPF). A detailed description of this metamodel and
a comparison with other method fragment proposals can be found in [6]. The
next section focuses on using Method Engineering and the OPF metamodel to
specify O-MaSE.

3 O-MaSE Process Framework

The O-MaSE Process Framework as shown in Fig. 2, is analogous to the OPF
from Fig. 1. In fact, we use the OPF metamodel in level M2. Level M1 con-
tains the definition of O-MaSE in the form of the O-MaSE metamodel, method
fragments, and guidelines. In the remainder of the section, we present the three
components of the O-MaSE contained in the M1. We first describe the O-MaSE
metamodel followed by a description of the method fragments obtained. Finally,
we discuss the guidelines that govern the construction of O-MaSE compliant
processes.

3.1 Metamodel

The O-MaSE metamodel defines the main concepts we use to define multiagent
systems. It encapsulates the rules (grammar) of the notation and depicts those
graphically using object-oriented concepts such as classes and relationships [9].



www.manaraa.com

O-MaSE 5

Fig. 2. O-MaSE Process Framework (adapted from [12])

The O-MaSE metamodel is based on an organizational approach [7, 8]. As shown
in Fig. 3, the Organization is composed of five entities: Goals, Roles, Agents, Do-
main Model, and Policies. A Goal defines the overall function of the organization
and a Role defines a position within an organization whose behavior is expected
to achieve a particular goal or set of goals.

Fig. 3. O-MaSE Metamodel (adapted from [8])

Agents are human or artificial (hardware or software) entities that perceive
their environment and can perform actions upon it. In order to perceive and
to act in an environment, agents possess Capabilities, which define the per-
cepts/actions the agents have at their disposal. Capabilities can be soft (i.e.,
algorithms or plans) or hard (i.e., hardware related actions). Plans capture al-
gorithms that agents use to carry out specific tasks, while Actions allows agents
to perceive or sense objects in the environment. This environment is modeled



www.manaraa.com

6 J.C. Garcia-Ojeda et al.

using the Domain Model, which defines the types of objects in the environment
and the relations between them. Each organization is governed by rules, which
are formally captured as Policies. A Policy describes how an organization may
or not may behave in a particular situation.

3.2 Method Fragments

As mentioned above, the OPF metamodel defines Stages, Work Units, Work
Products, Producers, and Languages, which are used to construct tailorable
processes. In our work, the initial set of method fragments are derived from an
extended version of the MaSE methodology [5]. O-MaSE assumes an iterative
cycle across all phases with the intent that successive iterations will add detail
to the models until a complete design is produced. This nicely fits the OPF’s
Iterative, Incremental, Parallel Life Cycle model. Our current work focuses on
analysis and design. In O-MaSE, we have identified three main activities: (1)
requirements engineering, (2) analysis, and (3) design. As shown in Table 1, we
decompose each Activity into a set of Tasks and identify a set of Techniques
that can be used to accomplish each Task. We also show the different Work
Products, and Producers related to the associated Work Units. Due to the page
limitations, we cannot discuss each of these separately . However, to illustrate our
basic approach, we describe the details of the requirements engineering activity.

In the Requirement Engineering activity, we seek to translate systems re-
quirement into system level goals by defining two tasks: Model Goals and Goal
Refinement. The first focuses on transforming system requirements into a sys-
tem level goal tree while the second refines the relationships and attributes for
the goals. The goal tree is captured as a Goal Model for Dynamic Systems
(GMoDS) [7]. The Goal Modeler must be able to: (1) use AND/OR Decomposi-
tion and Attribute-Precede-Trigger Analysis (APT) techniques, (2) understand
the System Description (SD) or Systems Requirement Specification (SRS), and
(3) interact with domain experts and customers. The result of these two tasks
are an AND/OR Goal Tree and GMoDS tree.

3.3 Guidelines

Guidelines are used to describe how the method fragments can be combined in
order to obtain O-MaSE compliant processes. These guidelines are specified in
terms of a set of constraints related to Work Units and Work Products, which are
specified as Work Unit preconditions and postconditions. We formally specify
these guidelines as a tuple Input, Output, Precondition, Postcondition where
Input is a set of Work Products that may be used in performing a work unit,
Output is a set of Work Products that may be produced from the Work Unit,
Precondition specifies valid Work Product/Producer states, and Postcondition
specifies the Work Product State (see Table 1) that is guaranteed to be true after
successfully performing a work unit (if the precondition was true). To formally
specify pre and postconditions, we use first order predicate logic statements
defined over the Work Products (WP) and Producers (P), the Work Products
states, and the iteration (n) and version (m) of the Work Products.



www.manaraa.com

O-MaSE 7

Table 1. O-MaSE Method Fragments

Work Units
Activity Task Technique Work

Products
Producer

Requirements
Engineering

Model Goals AND/OR
Decomposition

AND/OR Goal
Tree

Goal Modeler

Goal
Refinement

Attribute-
Precedes-
Triggers
Analysis

Refined GMoDS Goal Modeler

Analysis

Model
Organizational
Interfaces

Organizational
Modeling

Organization
Model

Organizational
Modeler

Model Roles Role Modeling Role Model Role Modeler
Define Roles Role

Description
Role
Description
Document

Role Modeler

Model Domain Traditional
UML notation

Domain Model Domain Expert

Design

Model Agent
Classes

Agent Modeling Agent Class
Model

Agent Class Mod-
eler

Model Protocols Protocol
Modeling

Protocol Model Protocol Modeler

Model Plans Plan
Specification

Agent Plan
Model

Plan Modeler

Model Policies Policy
Specification

Policy Model Policy Modeler

Model
Capabilities

Capability Mod-
eling

Capability
Model

Capability Mod-
eler

Model Actions Action
Modeling

Action Model Action Modeler

Model Services Service
Modeling

Service Model Service Modeler

Table 2. Work Product States

No. State Definition

1 inProcess() True if the work product is in process

2 completed() True if the work product has been finished

3 exists() exists() = inProcess() ∨ completed()

4 previousIteration() True if the work product’s iteration is any previous one

5 available() True if producer specified is available to perform

Figs. 4–8 illustrate a set of guidelines for a few of the Tasks defined in Table 1.
Fig. 4 defines the Model Goals task. Inputs to the task may include the Systems
Description (SD), the Systems Requirement Specification (SRS), the Role De-
scription Document (RD), or a previous version of the Goal Model (GM). Actu-
ally, only one of these inputs is required, although as many as are available may
be used. The inputs are used by the Goal Model Producer (GMP) to identify
goals. As a result of this task, the Work Product GM is obtained.

Fig. 5 depicts the task Goal Refinement. Generally, this task only requires as
input a GM from the Model Goals task and produces a refined GMoDS model.

Fig. 6 shows the task Model Agent Classes, which requires as input a Refined
Goal Model (RG), an Organization Model (OM), or a Role Model (RM). As out-
put an Agent Class Model (AM) is obtained. In the task, the Agent Class Modeler



www.manaraa.com

8 J.C. Garcia-Ojeda et al.

TASK NAME: Model Goals

Input Output Precondition Postcondition

SD, SRS,
RD, GM

GM ((exists(〈SD, n, m〉) ∨
exists(〈SRS, n, m〉) ∨
previousIteration(〈GM〉)) ∧
available(GMP)

completed(〈GM, n, m〉)

Fig. 4. Model Goals Task Constraints

TASK NAME: Goal Refinement

Input Output Precondition Postcondition

GM RG completed(〈GM, n, m〉) ∧
available(GMP)

exists(〈RG, n, m〉)

Fig. 5. Goal Refinement Task Constraints

TASK NAME: Model Agent Classes

Input Output Precondition Postcondition

RG, RM,
OM, AC,
CM, PrM

AC (exists(〈RG, n, m〉) ∨
exists(〈RM, n, m〉) ∨
exists(〈OM, n, m〉) ∨
exists(〈SM, n, m〉) ∨
previousIteration(〈AM〉)) ∧
available(ACM)

completed(〈AC, n, m〉)

Fig. 6. Model Agent Classes Task Constraints

TASK NAME: Model Plans

Input Output Precondition Postcondition

RG, RM,
AC, PrM,
AM, CM

PlM ((exists(〈RG, n, m〉) ∧
exists(〈AC, n, m〉)) ∨
exists(〈PrM, n, m〉) ∨
exists(〈AM, n, m〉) ∨
previousIteration(〈P lM〉)) ∧
available(PlP)

completed(〈P lM, n, m〉)

Fig. 7. Model Plans Task Constraints

TASK NAME: Model Protocols

Input Output Precondition Postcondition

RM, AC,
DM, OM,
AM

PrM ((exists(〈RM,n, m〉) ∧
exists(〈AC,n, m〉)) ∨
previousIteration(〈PrM〉)) ∧
available(PrP)

completed(〈PrM, n, m〉)

Fig. 8. Model Protocols Task Constraints



www.manaraa.com

O-MaSE 9

(ACM) identifies the types of agents in the system. A Capability Model (CM)
may provide useful insight into the process however, the CM is not sufficient nor
mandatory and thus is an optional input (and is not part of the Precondition).
The Protocol Model (PrM) may be useful in identifying relationships between
agents and thus, it is also optional.

The Model Plan task is defined in Fig. 7. The inputs can include a RG, RM,
or an AC, which allow the Plan Modeler (PlM) to define plans used by agents
to satisfy organization goals. In addition, a PrM, Action Model (AM), and CM
are required as input because such plans may require the interaction with other
entities using some defined protocol.

Finally, the Model Protocols task is defined in Fig. 8. To document a PrM,
the Protocol Modeler (PrP) requires the RM and the AC or a previous iteration
of the PrM. The Domain Model (DM), OM, and AM are optional inputs.

4 WMD Search Example

Next, we present two examples of applying the O-MaSE to derive custom pro-
cesses. We combine O-MaSE method fragments to create a custom process for a
Weapon of Mass Destruction (WMD) system in which agents detect and identify
WMD in a given area. There are three types of WMD that can be identified: ra-
dioactive, chemical, and biological. Once a suspicious object is found, it must be
tested to determine the concentration of radioactivity and nerve agents (chem-
ical and biological). If the object is indeed a WMD, it is removed. The mission
is successful when the area has been entirely searched and all the WMD have
been removed. In the subsequent subsections, we present two custom processes
for the WMD Search application.

Fig. 9. Basic O-MaSE Process



www.manaraa.com

10 J.C. Garcia-Ojeda et al.

Fig. 10. AND/OR Goal Model

4.1 Basic O-MaSE Process

The first process we derive is appropriate for a small agent-oriented project in
which reactive agents achieve goals that have been assigned at design time. Es-
sentially, the only products required for this type of system are the system goals,
agent classes, agent plans, and inter-agent protocols. This type of process leads
to a rigid MAS but is very easy and fast to develop. This process may also
be suitable for prototyping, where a simple and rapid process is needed. Fig. 9
shows the result of applying O-MaSE guidelines to the creation of our custom
process. (Tasks are represented by rounded rectangles while Work Products are
represented by rectangles.) The Work Products associated with the products
identified above are included, along with the Tasks required to produce them.
(We do not show the Producers to simplify the figure, but we assume the appro-
priate Producers are available.) Connections between Tasks and Work Products
are drawn and the preconditions and postconditions of each Task are verified.
Each Task will be discussed below:

Model Goals/Goal Refinement. From the System Description, the Goal
Modeler defines a set of system level goals in the form of an AND/OR goal tree.
The AND/OR tree is refined into a GMoDS goal tree as shown in Fig. 10. The
syntax uses standard UML class notation with the keyword “Goal”. The aggre-
gation notation is used to denote AND refined goals (conjunction), whereas the
generalization notation is used to denote OR refined goals (disjunction). GMoDS
models include the notion of goal precedence and goal triggering [7]. A precedes
determines which goals must be achieved while a trigger relation signifies that a
new goal may be instantiated when a specific event occurs during the pursuit of
the another goal. Fig. 10 captures a goal-based view of the system operation.



www.manaraa.com

O-MaSE 11

Fig. 11. Agent Class Model

Fig. 12. Protocol Model

Fig. 13. Plan Model

Model Agent Class. The purpose of this task is to identify the type of agents
in the organization and to document them in an Agent Class Model (Fig. 11).
In our example, agents are defined based on the goals they can achieve and the



www.manaraa.com

12 J.C. Garcia-Ojeda et al.

capabilities they possess as specified by the “achieves” and “possesses” keywords
in each agent class (denoted by the “Agent” keyword). Protocols between agent
classes are identified by arrows from the initiating agent class to the receiv-
ing agent class. The details of these protocols are specified later in the Model
Protocols task.

Model Protocol. The Model Protocol task defines the interactions between
agents. For example, Fig. 12 captures the WMD detected protocol where
WMD Agent 1, (who is pursuing the Check for Radioactive Weapon goal) de-
tects a WMD and notifies WMD Agent 3 (who is pursuing the Remove WMD
goal). The notification is done by sending a detected message with the location
as parameter. Upon reception of this message, an acknowledgment is returned.

Model Plan. The Model Plan task defines plans that agents can follow to satisfy
the organization’s goals. To model this, we use finite state automata to capture
both internal behavior and message passing between agents. Fig. 13 shows the
Radioactive Detect P lan possessed by WMD Agent 2 to achieve the Check
For Radioactive Weapon goal. The plan uses the goal parameter, location, as
input. Notice that, a plan produced in this task should correspond to all related
protocols.

4.2 Extended O-MaSE Process

To produce a more robust system that adapts to changes and internal failures,
it is necessary to have a process that can produce additional information such as
roles and policies. Roles define behavior that can be assigned to various agents

Fig. 14. Extended O-MaSE Process



www.manaraa.com

O-MaSE 13

Fig. 15. Role Model

while policies guide and constrain overall system behavior. To accommodate
such a system, additional Tasks must be introduced into the process to produce
a Role Model and a Policy Model. This type of process will allow designer to
produce a flexible, adaptive, and autonomous system. Fig. 14 shows the custom
process for this example.

Model Roles. The Model Roles task identifies the roles in the organization and
their interactions. Role Modelers focus on defining roles that accomplish one or
more goals For example, each role in the Role Model shown in Fig. 15 achieves
specific goals from Fig. 10; to do this, each role also requires specific capabilities.

Model Policies. The Model Policy task defines a set of rules that describe how
an organization may or may not behave in particular situations [10]. For example,
a policy “An agent may only play one role at a time” can be translated as

∀a1, a2 : agent, r : role|a1.plays(r1) ∧ a1.plays(r2) =⇒ r1 = r2.

5 Conclusions and Future Work

In this paper we have presented the O-MaSE Process Framework1, which
allows users to construct custom agent-oriented processes from a set of stan-
dard methods fragments. The main advantages of our approach is that: (1) all
O-MaSE fragments are based on a common metamodel that ensures the method
fragments can be combined in a coherent fashion, (2) each method fragment
uses only concepts defined in the metamodel to produce work products that can
be used as input to other method fragments; and, (3) the associated guidelines
constrain how method fragments may be combined in order to assemble cus-
tom O-MaSE compliant processes that produce an appropriate set of products
without producing unnecessary products.

Although we believe the O-MaSE is headed in the right direction with this
approach [11], there is a considerable additional work that must be done in or-
der to create a process amenable to industrial application. First, although the
O-MaSE metamodel covers the most basic MAS concepts (i.e., agents, interac-
tion, organization, and interactions), there are other agent-oriented methods and

1 This work was supported by grants from the US National Science Foundation
(0347545) and the US Air Force Office of Scientific Research (FA9550-06-1-0058).



www.manaraa.com

14 J.C. Garcia-Ojeda et al.

metamodels that deserve further study in order to capture all the main concepts
associated with other MAS approaches [2]. We are currently studying several
metamodels to determine how to integrate their novel concepts into the O-MaSE
metamodel. Second, we are currently working on how to include software metrics
into O-MaSE. The aim of these metrics is to predict MAS performance at the
analysis and design level [15]. Third, we are continuing to formalize our process
guidelines in order to avoid ambiguities between the metamodel and the method
fragments used to assembly the agent-oriented applications.2

Finally, we are integrating our working into agentTool III (aT3)3, which is
an analysis and design tool that supports the use of O-MaSE and exists as a
plugin for the Eclipse platform4. Eventually, we envision adding a module to aT3
that allows process designers to create and to use custom O-MaSE compliant
processes. Future plans for aT3 also include code generation for various platforms
and integration with the Bogor model checking framework for verification and
providing predictive metrics [16].

References

1. Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.): Methodologies and Software En-
gineering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Kluwer Academic Publishers, Dordrecht (2004)

2. Bernon, C., Cossentino, M., Pavón, J.: Agent Oriented Software Engineering. The
Knowledge Engineering Review 20, 99–116 (2005)

3. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some
multi-agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE
2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

4. Beydoun, G., Gonzalez-Perez, C., Henderson-Sellers, B., Low, G.: Developing and
Evaluating a Generic Metamodel for MAS Work Products. In: Garcia, A., et al.
(eds.) Software Engineering for Multi-Agent Systems IV. LNCS, vol. 3194, pp.
126–142. Springer, Heidelberg (2005)

5. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Devel-
opment Methods and Tools. Jnl of Information and Software Technology 38(4),
275–280 (1996)

6. Cossentino, M., Gaglio, S., Henderson-Sellers, B., Seidita, V.: A metamodelling-
based approach for method fragment comparison. In: Proceedings of the 11th In-
ternational Workshop on Exploring Modeling Methods in Systems Analysis and
Design (EMMSAD 2006), Luxembourg (June 2006)

7. DeLoach, S.A., Oyenan, W.H.: An Organizational Model and Dynamic Goal Model
for Autonomous, Adaptive Systems. Technical Report No. MACR-TR-2006-01.
Kansas State University (March 2006)

8. DeLoach, S.A., Valenzuela Jorge, L.: An Agent-Environment Interaction Model.
In: Padgham, L., Zambonelli, F. (eds.) AOSE 2006. LNCS, vol. 4405, Springer,
Heidelberg (2007)

2 A detailed description of the current set of O-MaSE Tasks, Techniques, Work Prod-
ucts, and Producers can be found at http://macr.cis.ksu.edu/O-MaSE/

3 See http://agenttool.projects.cis.ksu.edu/
4 See http://www.eclipse.org/



www.manaraa.com

O-MaSE 15

9. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-
duction. Addison-Wesley, Harlow-England (2002)

10. Harmon, S.J., DeLoach, S.A., Robby: Guidance and Law Policies in Multiagent
Systems. Multiagent & Cooperative Robotics Laboratory Technical Report No.
MACR-TR-2007-02. Kansas State University (March 2007)

11. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea
Group Inc. (2005)

12. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF). Annals of Software Engineering 14(1-
4), 341–362 (2002)

13. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing), AgentLink (2005)

14. Odell, J., Parunak, V.D., Bauer, B.: Representing Agent Interactions Protocols in
UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
pp. 121–140. Springer, Heidelberg (2001)

15. Robby, DeLoach, S.A., Kolesnikov, V.A.: Using Design Metrics for Predicting Sys-
tem Flexibility. In: Baresi, L., Heckel, R. (eds.) FASE 2006 and ETAPS 2006.
LNCS, vol. 3922, pp. 184–198. Springer, Heidelberg (2006)

16. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: A Flexible Framework for Creating Soft-
ware Model Checkers. In: Proceedings of the Testing: Academic & industrial Con-
ference on Practice and Research Techniques, pp. 3–22. IEEE Comp. Society,
Washington

17. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Proceedings of the 7th Workshop from Objects to Agents (WOA 2006),
Catania, Italy, pp. 130–137 (2006)



www.manaraa.com

Extending Gaia with Agent Design and Iterative
Development

Jorge Gonzalez-Palacios1 and Michael Luck2

1 School of Electronics and Computer Science, University of Southampton SO17 1BJ, UK
jlgp02r@ecs.soton.ac.uk

2 Department of Computer Science, King’s College London, Strand, London WC2R 2LS, UK
michael.luck@kcl.ac.uk

Abstract. Agent-oriented methodologies are an important means for construct-
ing agent-based systems in a controlled repeatable form. However, agent-oriented
methodologies have not received much acceptance in industrial environments,
which can be partially explained by drawbacks in current agent-oriented method-
ologies, mainly in terms of applicability and comprehensiveness. Specifically,
Gaia, one of the most cited methodologies, does not consider agent design, nor
exhibits an agile methodological process. On the other hand, Gaia is based on
organisational abstractions (which makes it suitable to cope with the design of
complex systems) and possesses a simple methodological process whose neutral-
ity makes it suitable for extensions. In this paper, we extend Gaia in two direc-
tions: we incorporate an agent design phase, and we enhance the methodological
process with the use of iterations.

1 Introduction

Emergent technologies such as the Grid, peer-to-peer computing and ubiquitous com-
puting, require systems that are open, highly distributed, and whose components exhibit
some level of autonomy and pro-activeness. It has been claimed [12, 4] that the com-
bined use of the multi-agent approach and organisational abstractions is a suitable
means to model such systems. More specifically, organisational abstractions provide
agent-oriented methodologies with the necessary design abstractions to cope with the
development of complex systems in a systematic and controlled form.

Among agent-oriented methodologies based on organisational abstractions [13, 9,
3, 1], Gaia [13] is arguably the most used. The popularity of Gaia can be explained by
the characteristics of its methodological process, which is simple to understand, has
a good separation of development phases, and is neutral to any specific implementa-
tion technique or platform. However, Gaia focuses only on the organisational aspect
of multi-agent systems (or macro level), leaving the actual design of agents (the mi-
cro level) unconsidered. This results in the absence of key development phases in the
methodological process, such as agent design and implementation, both essential for the
development of real world systems. Additionally, there is a propensity of the method-
ological process in general to construct systems once and for all, rather than part by
part. This constitutes another drawback of Gaia, since it is very difficult to accomplish
in a single opportunity the complete and detailed design of a whole complex system.

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 16–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Extending Gaia with Agent Design and Iterative Development 17

Similarly, other development activities such as implementation and testing are also com-
plicated if no explicit mechanism for decomposing the development is present.

In order to address these drawbacks, in this paper we present two extensions to the
Gaia methodology. The first extension consists of incorporating a phase for agent de-
sign, based on the use of well-known agent architectures [11]. The second provides the
Gaia process with a mechanism that decomposes the development of a system into iter-
ations, an approach that has been used successfully in mature object-oriented method-
ologies, for example in the Unified Software Development Process [7].

The rest of this paper is organised in the following way. In Section 2 we briefly
describe the main aspects of the Gaia methodology. In Section 3 we present the models
and activities of our proposed agent design phase, and show how this phase fits in
the Gaia methodology. In Section 4 we describe how we enhance the Gaia process to
incorporate the agent design phase, and use iterations to decompose the development of
a system. Finally, in Section 5 we present our conclusions.

2 Gaia Overview

Gaia [13] is an agent-oriented methodology based on the organisational concepts of
roles, interactions, and organisations, and is divided into analysis, architectural design,
and detailed design. A brief description of these concepts and phases is presented below.

2.1 Roles

Roles in Gaia represent well defined positions in the organisation, and the behaviour ex-
pected from them. Roles are characterised by: a name that identifies the role; a brief de-
scription; the protocols through which it interacts with other roles; the activities that the
role performs without interacting with other roles; the responsibilities that express the
functionality of the role (divided into liveness properties and safety properties, which
relate to states of affairs that a role must bring about, and the conditions whose compli-
ance the role must ensure, respectively); and the permissions to access the resources that
the role needs for fulfilling its responsibilities. A role is depicted graphically by means
of a role schema, an example of which is shown in Figure 1. As can be observed in the
figure, boxes in the schema correspond to the characterisation of roles, and the names
of activities are underlined to distinguish them from names of protocols. Additionally,
the responsibilities are expressed in a purpose-built language that includes operators to
represent sequence (.), alternatives (|) and indefinite repetition (w).

2.2 Interactions

Interactions in Gaia are characterised by means of protocol definitions, which consist
of: a purpose, that provides a brief description of the interaction; a list of initiators,
that enumerates the roles that can start the interaction (usually a single element); a list
of responders that enumerates the roles involved in the interaction; a list of inputs and
outputs that provides the information required or produced during the interaction; and a
brief description of the purpose of the interaction. This characterisation is represented
graphically using a diagram like that shown in Figure 2.



www.manaraa.com

18 J. Gonzalez-Palacios and M. Luck

Role Schema:

Description:

Protocols and

Activities:

Permissions:

Responsibilities:

Filteri

Performs the process

corresponding to stage i on the

input data

ProcessDatai, GetInput,

SupplyOutput, SenseFlows,

ChangeFlow

Liveness:

Safety:

Filteri = (Process | AdjustFlow)
w

Process =

GetInput.ProcessDatai.SupplyOutput

AdjustFlow = SenseFlows | ChangeFlow

changes Data,flowi,

agreedFlow

reads flowj

•true

Fig. 1. Example of a role schema

Purpose

Initiators Responders

Processing desc Inputs

Outputs

Fig. 2. Example of generic protocol definition

2.3 Organisations

An organisation in Gaia is formed of an organisational structure and a set of organisa-
tional rules. The former consists of a topology (the set of communication paths between
the roles), and a control regime (relationships of authority between the roles). Organisa-
tional rules are constraints about how the different elements of the organisation interact,
and either express situations that agents try to bring about, or express conditions that
must be kept invariable.



www.manaraa.com

Extending Gaia with Agent Design and Iterative Development 19

2.4 Phases

The Analysis Phase. The analysis phase deals with collecting the features needed to
understand the system, and consists of five activities: decomposition of the system into
sub-organisations, which aims to partition the system into more manageable units; iden-
tification of environmental entities, which deals with creating a list of the resources used
by agents while carrying out their activities and the rights of access to them (such as
read or change); creation of the preliminary role model, which consists of the construc-
tion of all role schemata; creation of the preliminary interaction model, consisting in
the creation of protocol definitions; and determining the organisational rules. It must be
noted that, for the preliminary models, the emphasis is placed on the identification of
roles and protocols, rather than in providing a complete description of their features.

The Architectural Design Phase. The next phase, architectural design, consists of two
parts: the selection of an organisational structure, and the completion of the role and
interaction models. The organisational structure plays an important part in the develop-
ment of the system because it impacts on the way agents are coordinated, and on how
the organisational rules are implemented. The completion of the role and interaction
models deals with detailing the roles and protocols with the information obtained once
the structure is determined. This activity includes the incorporation of new roles and
interactions which may have resulted from the application of the previous step.

The Detailed Design Phase. The final phase of Gaia, the design phase, consists of
producing the agent model, which involves determining which roles will be played by
which agents, based on considerations such as efficiency and physical distribution.

3 Agent Design

In addition to what Gaia provides, we also need to consider the design of the internal
composition of agents. However, since no agent design phase is included in Gaia, we
have constructed one which takes its inputs from the organisational design and its out-
put is a specification of how agents fulfil their requirements, which in turn serves as
input to the implementation phase. Our proposed agent design phase complements the
organisational design, in which agents are considered to be black boxes, and their de-
tailed composition is ignored. Although, in general agents can play more than one role,
in the following we assume that each agent plays exactly one role. At the end of the
section, however, we provide guidelines for the general case in which an agent imple-
ments more than one role. The design phase consists of models and activities to produce
these models, and is applied for each role of the system. These models and activities
are described below.

3.1 Models

The agent design considers two models, the structure model and the functionality model,
the former providing a structural decomposition of a role into classes, and the latter
specifying how these classes collaborate to achieve the expected behaviour of the role.



www.manaraa.com

20 J. Gonzalez-Palacios and M. Luck

Role

Functionality

Sequence

diagram

FilteriPipei

GetInput

SupplyOutput

processData

Pipei+1

Role

Functionality

Sequence

diagram

FilteriPipei

GetInput

SupplyOutput

processData

Pipei+1

Role

Functionality

Sequence

diagram

FilteriPipei

GetInput

SupplyOutput

processData

Pipei+1

Role

Functionality

Sequence

diagram

FilteriPipei

GetInput

SupplyOutput

processData

Pipei+1

Fig. 3. The functionality model

The Structure Model. The structure model decomposes a role into classes, with each
class encompassing data and functionality. In this way, the structure model is formed of
class diagrams [5], one diagram for each role in the system. Although a class diagram
is common in object-based techniques, it is used to represent different concepts — de-
pending on the stage of the process in which it is used — so it is worth explaining the
way in which we use it here. In the structure model, we use a class diagram to describe
the main internal components of a role (as classes), and the static relationships between
them, such as dependence, part-of and inheritance. The level of detail in the description
must be sufficient to identify the core classes, and for each of these classes, the oper-
ations necessary to achieve the functionality of the role, and the internal information
required to implement these methods (attributes). However, it is not necessary that the
diagram includes all the classes needed to implement the role, nor all the attributes and
methods to implement each class.

The Functionality Model. The functionality model consists of a set of scenarios,
each of which represents a piece of functionality of the role, and contains a sequence
diagram [5] showing how the role executes the functionality. The classes involved in
the sequence diagram are those of the class diagram corresponding to the role. For
example, in a market application, a possible scenario for the buyer role would represent
the functionality find the best price seller for a given product by means of a sequence
diagram showing how the classes of the buyer interact to achieve it. Figure 3 depicts a
generic functionality model, and the composition of the scenarios.

Thus, any role in the system has an associated class diagram and a number of sce-
narios, each referring to a piece of functionality and described by means of a sequence
diagram. This association is illustrated in Figure 4 for a generic role i, and a generic
scenario j.

3.2 Activities

The activities involved in agent design consist of selecting an appropriate agent ar-
chitecture and building the models described above. These activities are illustrated in



www.manaraa.com

Extending Gaia with Agent Design and Iterative Development 21

Role 1
…

Role i
…

Role n

Class
diagram

Scenario 1
…

Scenario j
...

Scenario m

functionality
statement

sequence
diagram

Structure model

Determine the

agent architecture

Create class

diagrams

Create

scenarios

Architectural

patterns

Functionality model

Fig. 4. The models (left) and activities (right) of the agent design

Figure 4, together with indications of those stages in which the use of architectural pat-
terns is valuable. Architectural patterns [6] are design patterns that correspond to well
established agent architectures, and include a class diagram, scenarios, and situation in
which their use is advisable, and methodological guidelines for their use. In this way,
for every role in the system, the following activities are performed.

Determining the Agent Architecture. In this activity, the architecture for the role is
determined. In order to do this, several factors must be considered. The most important
factor deals with the complexity of the behaviour expected from the role. For exam-
ple, a simple behaviour can be more easily implemented through reactive architectures,
whereas a complex behaviour may require the use of deliberative or hybrid architec-
tures. A second factor deals with the level of pro-activeness required. Reactive archi-
tectures typically produce agents which are not pro-active, but operate on request of
other agents, whereas BDI architectures are suitable for constructing pro-active agents.
Other factors that affect the decision are the level of familiarity of developers with a spe-
cific architecture, and the support that different development tools provide for specific
architectures. This activity can be facilitated by a catalogue of design patterns showing,
for each architecture, its characteristics, advantages, limitations and applicability.

Creating Class Diagrams. In order to create the class diagram, two different methods
can be used. The first is to employ an object-based methodology. The second consists
of using a catalogue of architectural patterns, together with guidelines for selecting an
appropriate pattern for a specific role. Regardless of which method is used to construct
the class diagram, the inputs are taken from the organisational design models of Gaia.
Specifically, the role model provides three inputs: the liveness responsibilities (which
describe the functionality that the role is expected to exhibit), the safety responsibili-
ties (describing the conditions that must hold during the lifetime of the role), and the
permissions (which contain the environmental entities employed by the role, together
with the rights to access them). Additionally, the interaction model of Gaia provides
the inputs and outputs of the protocols in which a role participates, the organisational



www.manaraa.com

22 J. Gonzalez-Palacios and M. Luck

structure provides the authority relationships involving the role, and the organisational
rule model provides the rules that constrain the behaviour of the agent.

Creating Scenarios. Similarly to the class models, the scenarios can be obtained by
following an object-based methodology, or by using a catalogue of architectural pat-
terns together with procedures to select the appropriate pattern. When following an
object-based methodology, it is advisable to decompose the functionality of the role by
means of use cases [5], and then build the corresponding sequence diagram for each of
them. The inputs for creating the set of scenarios are the same as for creating the class
diagrams, with the addition of the class diagrams themselves.

3.3 Example

In order to illustrate agent design, we consider a system for segmenting users according
to common interests. This system is based on [8], used to illustrate the INGENIAS
methodology. It deals with a segmentation of users in groups of common interests, and
is meant to be used for marketing purposes, such as for offering specific products only
to potentially interested users. The system is conceived as a multi-agent system in which
each (human) user is represented by a personal clerk, which groups with other personal
clerks to form a community. Such a community is represented by a clerk of community,
and relates to one subject. This segmentation of interests helps to control the quality of
documents provided to users, as explained below.

A community can be seen as a source of information to which users subscribe to
obtain relevant information for their interests. Once subscribed, a user begins to re-
ceive information from the community. This information originates from members of
the community or from other sources of information such as forums of news and other
communities (different communities can exchange information as long as it is autho-
rised by the administrator of the system). The information that the users receive passes
through a series of filters to ensure its quality.

When a user suggests information to the community, the community first compares
the suggestion with the community profile. If the information matches the community
profile, the document is evaluated by a set of members of the community. However,
before being evaluated by their users, each of their personal clerks decides, on their own,
whether the document is interesting to its user. In the affirmative case, the evaluation
request is presented to the user, so that he evaluates the document. In the negative case,
a vote against the document is produced. The suggested document is approved only if
most of the consulted members vote in favour of the document, and the positive and
negative evaluations are registered and used in the acceptance of future suggestions.

The permanence of members in a community is subject to the following restrictions:
first, users who have suggested many documents evaluated negatively are expelled,
since their interests are not in accordance with those of the community; and second,
users who evaluate too many documents negatively are also expelled, since they have
not shown interest in the type of information provided by the community.

Community clerks and personal clerks describe their interests by means of a profile,
which can take the form of a set of documents (the last documents evaluated positively),
keywords or categories. The keywords and categories of a clerk can be modified by its



www.manaraa.com

Extending Gaia with Agent Design and Iterative Development 23

Role Schema:

Description:

Protocols and
Activities:

Permissions :

Responsibilities:

Profiler

Decides if a document is
relevant to a community

MatchDoc, ApproveDoc, 
matchProfileDoc, CountVotes

Liveness:

Safety :

Profiler = ( (MatchDoc . matchProfileDoc )
| (ApproveDoc . CountVotes) )w

read s document, profile
change s evaluation.

.

Fig. 5. The Profiler role

user. Users connect with their clerks by means of a Web interface that allows them to:
suggest documents, evaluate documents, see documents, and see statistics of operation.

In the following, we assume that the analysis and organisational design have identi-
fied a role in charge of determining if a proposed document is relevant to a community,
hereafter called the Profiler, and whose role schema is shown in Figure 5. Additionally,
we assume that, according to the organisational structure of the system, the Profiler
role is completely subordinated to the authority of the community clerk, so that its be-
haviour can be modelled as a process of receiving orders, performing activities related
to accomplishing these orders, and replying with the results produced by the activities.
Considering its purely reactive behaviour, we conclude that the Profiler role can be
modelled by means of the subsumption architecture [2].

The Subsumption Architecture. The subsumption architecture [2, 10] is a reactive
architecture developed by Brooks, that bases its function on the existence of behaviours
and their relationships of inhibition. Each behaviour is intended to achieve a specific
task and associates perceptual inputs with actions. For example, in the case of a vehicle
control application, the behaviour, changing direction if an obstacle is found in front,
associates the perceptual input, an obstacle is in front, with the task, change direction.
To pursue its aim, each behaviour continually senses the environment until the environ-
mental state matches its associated perceptual input, in which case the associated action
is performed. In this example, the environment is continually sensed until an obstacle
is detected in front of the vehicle, in which case the action of changing direction is
performed. However, since an environment state may match more than one behaviour,
an inhibition relation is used to specify priorities. According to this inhibition relation,
the behaviours are arranged into layers, with lower layers capable of inhibiting upper
layers, and the higher the layer the more abstract its behaviour. For example, in the case
of vehicle control, the behaviour corresponding to collision avoidance occupies a lower
layer than that of the behaviour corresponding to reach the destination, since avoiding
an obstacle has priority over reaching the destination. Therefore, using the subsumption
architecture, we construct the structure and functionality models corresponding to the
Profiler role, as described below.



www.manaraa.com

24 J. Gonzalez-Palacios and M. Luck

Structure Model. The Profiler interacts with its environment by means of interaction
protocols. As can be observed in its schema (Figure 5), the Profiler role participates
in two protocols: MatchDoc and ApproveDoc. According to this, the environment per-
ceived by the Profiler can be described as the set of tuples, (command, content1, con-
tent2), where: command is an identifier of the type of protocol (for example, Match
for the MatchDoc protocol, or Approve for the ApproveDoc protocol); content1 is a
document; and content2 is an evaluation if command is Match, or nil otherwise (this
corresponds to the outputs of these protocols, as stated in the interaction model). Ac-
cordingly, there are two behaviours for this role, as described below.

b1. if (Match, d, e) is perceived then execute MatchProfileDoc(d) and continue the
execution of protocol MatchDoc.

b2. if (Approve, d, e) is perceived then execute IsApproved(d, e) and continue the exe-
cution of protocol ApproveDoc.

Here, MatchProfileDoc and IsApproved are activities of the Profiler role, dealing
with matching a document to the community profile, and approving a document, respec-
tively, as is stated in its role description. Note that, in this particular case, the inhibition
relationship is irrelevant, since no perceived state can match both b1 and b2.

The class diagram for the structural model is obtained by enhancing the class dia-
gram of the subsumption pattern, with the particular characteristics of the Profiler role,
resulting in the diagram shown in Figure 6. The enhancements consist in the elimination

Action

Percept

command

document

evaluation

Behaviour

PerceptualInterface

See()

SubsumptionController

SelectAction()

PerceptualInput()

ExecuteAction()

FindListOfBehaviours()

FirstBehaviourOfList()

NextBehaviourOfList()

Perceptor

environmentState

SenseEnvironment()

EffectoricInterface

Act()

EnvironmentInterface

EnvironmentState()

ModifyEnvironment()

Effector

EffectEnvironment()

11

1..n1..n

Condition

1..n

1..n

1..n

1..n

11

1..n1..n

11

MatchDocP

rofile

IsApproved

Fig. 6. Class diagram of the structure model



www.manaraa.com

Extending Gaia with Agent Design and Iterative Development 25

: SubsumptionController :

PerceptualInterface

: Perceptor :

EffectoricInterface

: Effector :

EnvironmentInterface

: Action

SelectAction( )

See( )
SenseEnvironment( ) EnvironmentState( )

Act( )
EffectEnvironment( )

ModifyEnvironment( )

ExecuteAction( )

Fig. 7. Sequence diagram of the functionality model

of the original Inhibitor class (since no inhibition relationship is required), the descrip-
tion of the information perceived (Percept class), and the representation of the Inhibitor
activities as actions of behaviours.

Functionality Model. The operation of the Profiler is so simple that only one scenario
is needed to describe its functionality. Such a scenario describes the dynamics followed
by the classes to accomplish the functionality of the role, and is expressed by a sequence
diagram adapted from the subsumption pattern. This sequence diagram, which is shown
in Figure 7, is easier to interpret if we consider that the Profiler perceives the environ-
ment by receiving messages and interpreting their content, and affects the environment
by sending messages.

3.4 Agents that Play More Than One Role

In the previous description of the agent design phase, the agent in question encompasses
only one role. However, in general this is not the case, since a given agent may encom-
pass more than one role for reasons of efficiency, physical distribution and facility of
implementation. When more than one role is included in one agent, the agent design
is applied to each of the roles, and the resulting models analysed to identify common
classes. These common classes can then be merged, resulting in a reduction of the num-
ber of classes, particularly when the roles are modelled by the same agent architecture.
However, an excessive merging of classes increases the coupling between the roles, and
can bring some difficult problems. For example, in the case of the subsumption architec-
ture, when merging the behaviours of two different roles, a new inhibition relationship
(that considers the behaviours of the two roles) must be determined.

Now that we have described the agent design phase, we also need to consider how it
might be incorporated into the methodological process. We do this below.



www.manaraa.com

26 J. Gonzalez-Palacios and M. Luck

4 Iterative Development

The main idea behind applying an iterative approach to the development of a system is
to divide the development into simpler, and thus more manageable, units. Each unit is
then analysed, designed and implemented to produce an executable deliverable which
extends, in functionality, the previous deliverable, in such a way that the final executable
deliverable encompasses all the functionality expected from the system. This reduces
the risk of producing the wrong system, and of exceeding delivery times.

The iterative approach decomposes the development activities in two dimensions.
The first dimension corresponds to the typical ways of developing software, which in
our case consists of decomposing the development into analysis, architectural design,
detailed design, and agent design. The second dimension relies on the use of iterations,
which consist of the application, to some degree, of all the phases mentioned above,
and several iterations are carried out during the development of the whole system. Early
iterations focus on the first phases, analysis and architectural design, while subsequent
iterations focus on the last phase, agent design.

While the decomposition into phases is common for all applications, iteration de-
composition varies from application to application, in terms of work dedicated to each
phase, number of iterations, and, more importantly, purpose. As a general rule, the
larger the system, the more iterations are needed. In addition, the actual decomposition
of the development cycle into iterations is guided by the functionality of the system.
This means that the functionality of the system is divided into parts, one or more of
which are assigned to an iteration, whose purpose is to accomplish that part of the func-
tionality. The order in which the iterations must be carried out is important and must
be established as part of the iteration decomposition, since the most critical and impor-
tant parts of functionality must be considered first, to obtain earlier user feedback and
foresee possible changes in delivery times.

Some guidelines for iteration decomposition are as follows: the set of iterations must
cover all the functionality expected from the system; the early iterations in the decom-
position must be occupied by those functionalities that form the core of the system (such
as critical processes that are poorly described), or by those functionalities that involve
a high risk of creating the wrong system or delaying the delivery of the system (such
as the employment of new technology); early iterations must provide insight of most of
the system; and it is desirable to achieve a balance in the iterations, so that no iteration
is too big nor too small.

To illustrate all this, we apply the iterative process to the problem described in
Section 3.3. First, the functionality of the system can be divided into several parts.

Part 1. Approve new information: receiving, filtering, and disseminating documents
suggested by users.

Part 2. Exchange information: the part dealing with the exchange of information be-
tween different communities or other sources of information.

Part 3. Create communities: the process of creating new communities in the system.
Part 4. Eliminate communities: elimination of unwanted communities from the

system.



www.manaraa.com

Extending Gaia with Agent Design and Iterative Development 27

Part 5. Register new users: the process of accepting new users in the communities.
Part 6. Expel users: the part dealing with expelling unwanted users from communities.

This partition is used as the basis for the iteration decomposition of the system, which
also takes into account the following two factors. First, it considers the potential size
of each of the parts, and tries to keep a balance in the sizes of the iterations. Second, it
prioritises the parts by their importance in the functionality of the system. In particular,
it recognises Part 1 as the core of the system, since it directly supports the accomplish-
ment of the goal of the system, and is also the most complex part, involving several
components of the system. The decomposition of the system into iterations is presented
in Table 1, and the next section describes the first of these iterations.

Table 1. Iteration decomposition of the case study

Iteration Parts Functionalities
1 Part 1 Approve new information
2 Part 5 and Part 6 Register new users and expel users
3 Part 3 and Part 4 Create communities and Eliminate communities
4 Part 2 Exchange information

4.1 First Iteration

For the first iteration, the following are the roles that form the role model: the Profiler,
which decides if a document is relevant to a community; the PersonalClerk, in charge
of interacting with a user; the CommunityClerk, that act as the representative of a com-
munity; and the Evaluator, which decides if a document is interesting to a particular
user. The role schema for the Profiler was presented previously in Figure 5, but lack of
space prevents us from including the other schemas.

The interaction model consists of six protocols, which are summarised in Table 2.
In this table, note the existence of the environmental entities Recommender, Reader
and Voter. The resulting organisational structure is a tree with the CommunityClerk at
the root, and a peer branch to the PersonalClerk, and authority branches to the Profiler
and to the Evaluator. Lastly, and assuming that each role is implemented by a different
agent, the first iteration ends with the design of each of the four corresponding agents.
In Section 3.3 we presented the design of the Profiler, but space constraints prevent us
from presenting the design of the other agents.

Table 2. Interactions in the first iteration

Protocol Initiator Collaborators Description
ProposeDoc Recommender PersonalClerk a user suggests a document
DisseminateDoc CommunityClerk PersonalClerk, an approved document is distributed

Reader
EvaluateDoc CommunityClerk Evaluator, Voter a user and her clerk evaluate a document
MatchDoc CommunityClerk Profiler a document is checked against a profile
ApproveDoc CommunityClerk Profiler acceptance or rejection of a document
ChangeProfile Reader PersonalClerk a user changes her profile



www.manaraa.com

28 J. Gonzalez-Palacios and M. Luck

RegisterUser

Reader
PersonalClerk,

CommunityClerk

The user registers with the community
profile

acceptance

ExpelUser

CommunityClerk
CommunityClerk,

Reader

Expels a user from the community
nil

nil

Fig. 8. Preliminary protocol description of registering and expelling users

4.2 Second Iteration

The second iteration addresses another part of the functionality of the system, and con-
sists of enhancing the results of the previous iteration in terms of adding elements to
the models, extending elements or modifying them. For example, in the case of the
preliminary role model, new roles can be added and existing roles can be modified to
include interaction with the new roles. In this example, the second iteration deals with
the registration of new users and the expulsion of inadequate users, as described below.

In order to incorporate the functionality of the second iteration, no new roles are re-
quired, since it can be carried out by the PersonalClerk and CommunityClerk. However,
the incorporation of new protocols to the preliminary interaction model is necessary to
cope with these tasks. Such protocol descriptions are shown in Figure 8, the first of
which refers to the registration of new users and the second to the expulsion of users.

The role model obtained in the first iteration is updated to incorporate these intro-
duced protocols, specifically, the PersonalClerk and CommunityClerk schemas should
be modified to include them. In contrast, the organisational structure needs no modifica-
tion, since the introduced protocols do not change either the communication paths or the
authority relationships between the roles. Finally, since no new roles were introduced
in the second iteration, the agent design phase consists only of updating the design of
those roles that were affected, namely the PersonalClerk and CommunityClerk.

The completion of the example would require the accomplishment of the rest of the
iterations, but since they are very similar, they are not included in this paper.

5 Conclusions

Gaia has been recognised as a valuable methodology for the development of open com-
plex systems based on the multi-agent approach. However, in order to be used in the
development of real world systems, Gaia needs to be extended in several respects. In
this paper, we have extended the Gaia methodology in two directions. The first exten-
sion deals with the design of the internal composition of agents in a multi-agent system.
For this, we have presented an agent design phase that follows the organisational design
phase of Gaia and produces an object-based specification from which an implementa-
tion can follow. This agent design phase relies on the use of agent architectures as a
means to specify the classes that form an agent and the way they interact to fulfil its
behaviour. As an example of the application of the design phase, we have presented the
design of a reactive agent which is based on the subsumption architecture. Although



www.manaraa.com

Extending Gaia with Agent Design and Iterative Development 29

simple, this example shows how entities acting as service providers can be agentified,
which can also be applied to legacy software.

The benefits of this approach are that the resulting design phase does not depend on
a specific agent architecture, but developers are free to select the architecture that best
models a given agent. Nevertheless, the drawback of this approach is that agent archi-
tectures are not based on organisational concepts (like those on which Gaia’s organisa-
tional design is based), so it is necessary to adapt them. However, since this process is
essentially independent of the domain, it can be pre-determined and then reused.

The second extension to Gaia presented in this paper provides Gaia with a flexi-
ble methodological process that facilitates the development of large systems. This en-
hancement consists of decomposing the development into iterations, each of which
corresponds to a part of the functionality of the system and consists of the analysis,
organisational design and agent design phases.

The benefits of this iterative process are multiple. First, it enables the production of
executable deliverables from early stages of the development. Second, it explicitly pri-
oritises those parts of the system that are critical, unclear or involve technological risks.
Finally, it speeds up the development by incrementing the parallelism in development
tasks. The full potential of this iterative process, however, is limited by the lack of an
implementation phase, which is subject of further work.

References

1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems (8), 203–236 (2004)

2. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation 2(1), 14–23 (1986)

3. DeLoach, S.A.: Modeling organizational rules in the multiagent systems engineering
methodology. In: Cohen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2338,
Springer, Heidelberg (2002)

4. Ferber, J., Gutknecht, O., Michel, F.: From agents to organisations: An organizational view
of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS,
vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

5. Fowler, M., Scott, K.: UML Destilled: Applying the Standard Object Modeling Language.
Addison-Wesley, Reading (1997)

6. Gonzalez-Palacios, J.: Increasing Accessibility in Agent-Oriented Methodologies. PhD the-
sis, University of Southampton (to appear, 2006)

7. Jacobson, I., Rumbaugh, J., Booch, G.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

8. Mestras, J.P., Sanz, J.G., Fuentes, R.: (1999),
http://grasia.fdi.ucm.es/ingenias/

9. Omicini, A.: SODA: Societies and infraestructures in the analysis and design of agent-based
systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 185–
194. Springer, Heidelberg (2001)

10. Wooldridge, M.: Multiagent Systems: a Modern Approach to Distributed Artificial Intelli-
gence, chapter Intelligent Agents. MIT Press, Cambridge (1999)

http://grasia.fdi.ucm.es/ingenias/


www.manaraa.com

30 J. Gonzalez-Palacios and M. Luck

11. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. The Knowledge En-
gineering Review 10(2), 115–152 (1995)

12. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational abstractions for the analy-
sis and design of multi-agent systems. In: First International Workshop on Agent-Oriented
Software Engineering, pp. 127–141 (2000)

13. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370
(2003)



www.manaraa.com

AgentPrIMe: Adapting MAS Designs to Build

Confidence

Simon Miles1, Paul Groth2, Steve Munroe2, Michael Luck1, and Luc Moreau2

1 Department of Computer Science, King’s College London, UK
{simon.miles,michael.luck}@kcl.ac.uk

2 School of Electronics and Computer Science, University of Southampton, UK
lavm@ecs.soton.ac.uk

Abstract. The products of systems cannot always be judged at face
value: the process by which they were obtained is also important. For
instance, the rigour of a scientific experiment, the ethics with which an
item was manufactured and the use of services with particular licens-
ing all affect how the results of those processes are valued. However,
in systems of autonomous agents, and particularly those with multiple
independent contributory organisations, the ability of agents to choose
how their goals or responsibilities are achieved can hide such process
qualities from users. The issue of ensuring that users are able to check
these process qualities is a software engineering one: the developer must
decide to ensure that adequate data is recorded regarding processes and
safeguards implemented to ensure accuracy. In this paper, we describe
AgentPrIMe, an adjunct to existing agent-oriented methodologies that
allows system designs to be adapted to give users confidence in the results
they produce. It does this by adaptations to the design for documenta-
tion, corroboration, independent storage and accountability.

1 Introduction

Agent-based systems have particular qualities that require their activity to be
justified to their users. First, since they are based on autonomous components,
decisions that make use of expert knowledge or have significant consequences
can be handled by software, and so the decisions made by such software must be
seen to be reliable if the software is to be widely adopted. In addition, by having
multiple, distributed points of control, an application may rely on services not
under the authority of the user, and whose side-effects may not be apparent to
the user: a user may wish to know that the services do not produce their results
in an undesirable way, such as being illegal, unethical, etc. Finally, in systems
where agents represent localised concerns of distributed users, it is important to
know that agents have not released private information more widely than desired.

At some level, this problem has been well researched. There are already ap-
proaches to formally specify a multi-agent system, enabling developers to verify
its desirable properties [9]. However, this does not in itself inform developers
about what factors need to be considered, nor is it (commercially) realistic to

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 31–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

32 S. Miles et al.

assume fine-grained knowledge of third-party services used in an application.
Mechanisms have been designed to guide agent behaviour towards reliable re-
sults or to constrain agent behaviour to only desirable results, including con-
tracts, norms, protocols, trust evaluations etc.

Nevertheless, we argue that, even with this breadth of beneficial technology,
there are significant outstanding issues. First, agent-based systems must be de-
signed not just to be reliable but to make their reliability apparent to users if
they are to have confidence in the system. Second, the above mechanisms con-
centrate on the value or otherwise of results or the cost of achieving those results,
both aspects of the system that can be immediately judged by the user or an
agent acting on their behalf. Because of this emphasis, other, hidden but still im-
portant, aspects are ignored. In particular, the mechanisms do not address how
to determine process qualities that are not immediately apparent in the result
returned by an agent but have an impact on its worth. Examples of important
process qualities occur in many domains, such as the following.

– The rigour of the scientific experiment that produced some result.
– The ethics (fair trade, environmental impact, etc.) of the process that led to

the sale of an item.
– The use of services with licenses that make a result unpatentable.
– The actual inter-dependence of two apparently independent recommenda-

tions.

The qualities of the process that led to a result are all evident in the prove-
nance of that result, i.e. everything that caused the result to be as it is. For
the provenance of a result, and process qualities evident from it, to be made
apparent to a user requires that an agent-based system be engineered to record
adequate information to determine both (1) what has occurred in the system
prior to the result being produced, and (2) which of those events are causally
related to the eventual result.

However, in a system of flexible autonomous agents, such agents may lie or
collude to hide the actions they have taken where it is in their interests to do
so (as is true in the four process examples above). Similarly, without specifi-
cally designing a system that prevents agents’ inaccuracy, a user can be misled.
Therefore, we argue that agent-oriented designs must be specifically adapted to
mitigate for inaccuracy and provide confidence that users can determine exactly
how a multi-agent system came to produce a result.

In this paper, we describe AgentPrIMe, an additional stage for existing
methodologies. It is used, firstly, for determining what information needs record-
ing and how to adapt the relevant agents to do so. Then, it tackles what must be
established of an agent owned by a third-party in order to rely on it to provide
compatible and verifiable information regarding provenance.

2 AgentPrIMe

A methodology fragment [8] is a software engineering procedure that is used in
addition to the usual stages of a methodology when designing an application. It



www.manaraa.com

AgentPrIMe: Adapting MAS Designs to Build Confidence 33

aims to add or ensure some functionality of the system, that may otherwise not
be guaranteed by the original methodology. Aspect-oriented software engineer-
ing [6] provides an example of methodology adjuncts that provide functionality
pervading across a design (usually object-oriented). Others have applied aspect-
orientation to agent-based systems [3], but we do not use the aspect concept here
because, while it is not entirely inappropriate, it carries connotations of cutting
across agents in a way that pre-supposes that the process they are involved in
is fixed at design-time. Process qualities are concerned with processes that have
already occurred in a system that may be flexible, open and unreliable.

A desirable quality of a methodology adjunct is methodology-neutrality, so
that it is general and sufficiently well-defined to be applied as part of as many
methodologies as possible. This is a distinct quality from the comparable re-
quirement of methodologies (and their adjuncts) of being widely applicable to a
range of applications.

AgentPrIMe is a methodology adjunct for agent-oriented software engineer-
ing methodologies. We will refer to the methodology to which it is acting as an
adjunct as the extended methodology. The outcome of applying AgentPrIMe is
a set of adaptations to be applied to a system design, so that queries regard-
ing provenance can be reliably answered. It builds on an existing methodology
adjunct, Provenance Incorporation Methodology (PrIMe), described elsewhere
[11], which is concerned with adapting software to help users determine prove-
nance of results, but considers only service-oriented systems. In particular, PrIMe
does not address issues relevant to an agent-oriented design, where autonomous
components choose their own methods to achieve their goals and so may be
dishonest.

There are two aims of AgentPrIMe: (1) to make the provenance of results
available to users of the system, and (2) to ensure that, as far as possible,
the provenance is accurate even when agents in the system may be unreliable.
Specifically, AgentPrIMe has two phases, described in detail in the following
sections.

– Identify the causes of agent actions in the design, instances of which are
recorded as the agents act. This phase results in adaptations to agents so
that they record such causes for users to later query.

– Identify where additional guarantees of accuracy are required, so as to be
able to rely on what agents have recorded. This phase results in adaptations
to the interactions between agents, so that users can have more confidence
that what agents have recorded is accurate.

AgentPrIMe relies on understanding the types of agents that will exist within
a system, so that their effects in processes and the interactions possible between
those agents can be understood. It can affect both how those agents are ulti-
mately implemented, and may alter the possible interactions between them, as
will be seen in the subsequent sections. These dependencies mean that Agent-
PrIMe is ideally applied at a particular point in the extended methodology,
when the design is sufficiently well developed to adapt but not so far devel-
oped that effort is wasted. To be more concrete, we specify below at which point



www.manaraa.com

34 S. Miles et al.

AgentPrIMe would apply when using various methodologies that the reader may
be familiar with.

– In Gaia [14], AgentPrIMe must be applied after the agent model and ac-
quaintance model have been completed. This is because it applies to agent
types, where the functionality of an agent of each type is well-defined, and
the interactions between them dictated by the acquaintance model.

– In MaSE [2], AgentPrIMe must be applied after the agent classes and con-
versations have been created, for analogous reasons to those given for Gaia.

– In Prometheus [13], AgentPrIMe operates on the agent overview, after the
architecture design and before the detailed design.

– In SODA [12], AgentPrIMe requires the data from the interaction and agent
models, so applies after SODA has completed.

3 Causality in Multi-Agent Systems

In this section, we describe the first phase of AgentPrIMe, where system de-
signs are adapted to document the causal relationships between agent actions.
This gives users the facilities to determine the provenance of agent actions and
outputs. We consider the unreliability of agents in the next section.

3.1 Causality within Agents

A key part of AgentPrIMe is to allow agents to document the causes of their
actions, so that this information can later be used to determine what occurred in
a process. The possible causes in a model depend on the extended methodology,
but we discuss some examples in this section and then show how these can be
generalised in a well-defined way for methodology-neutrality.

A variety of factors influence an agent’s behaviour at a given instant, as il-
lustrated in the examples summarised in Figure 1. Here, we are concerned with
behaviour that affects the environment, i.e. actions, shown as the output of the
agent. Depending on the agent model used by the extended methodology, the
influencing factors can include the agent’s goals, responsibilities or rights. Often,
the latter factors are due to the roles that the agent is playing within a system
at that instant, with the goals and responsibilities having been allocated to the
roles in applying the extended methodology [7]. Additionally, triggers from the
environment, which include messages from other agents, shown as input in
the figure, influence how an agent acts.

AgentPrIMe, and its supporting technologies, allow an agent to assert the
causal relationship between two occurrences. These assertions, called relationship
p-assertions, can be stored for later interrogation by a user, as discussed further
below. Applied to an agent design, this means that relationships can be asserted
between an output (the effect) and the inputs, goals, responsibilities, and so on
that caused it to take place. These relationships are depicted in Figure 2. Using
the examples already described, these causal relationships can be used to assert:



www.manaraa.com

AgentPrIMe: Adapting MAS Designs to Build Confidence 35

– that an output message was sent in response to an input message;
– that an action was taken to attempt to fulfil a goal;
– that an action was taken because it was part of the reponsibilities of the

agent; or
– that an action was taken because it was allowed for by a right of the agent.

In recent work [10], we have discussed one particular example of this: how the
documentation of the causal effects of goals can be used to make applications
more robust.

However, the concepts described above are only a subset of those used in
agent-oriented methodologies. Others include motivations, beliefs, intentions, ad-
herence to protocols and so on, and many of these may be asserted as causes
of an agent’s action. In order for AgentPrIMe to be methodology-neutral, we
need a general definition of whether something specified as part of applying a

Fig. 1. Potential causes of an agent’s actions

Fig. 2. Causal relationships between an agent’s action and its causes



www.manaraa.com

36 S. Miles et al.

methodology is a causal relationship, and adopt the following definition derived
from work in the philoshopy of mind [5].

E was caused by C, if E would not have occurred without C not having
occurred, all else being equal.

By applying this definition, we can determine whether a particular factor influ-
enced an action regardless of the methodology extended. For example, we can
say that a particular action would not have been taken if the agent didn’t have
a responsibility to do so, or that an action would not have occurred (because it
could not) if the agent did not have the right to do so. The important quality
of this definition is that it is system independent, relying only on a notion of
occurrence.

3.2 Causality between Agents

One of the causes of an agent’s actions discussed above is a message received
from another agent. This is of particular interest when examining process quali-
ties: it is not the actions of a single agent that matter but of a set of agents that
ultimately produce some result. Therefore, in addition to asserting causal rela-
tionships, AgentPrIMe allows agents to assert the inputs it receives and outputs
it sends to other agents. These assertions are called interaction p-assertions, and,
along with relationship p-asssertions, connect together the actions of one agent
to those of another.

Fig. 3. A chain of interactions and causal relationships between agents

A chain of two agents is shown in Figure 3. In this figure, Agent 1 sends a
message to Agent 2. This behaviour by Agent 1 is caused by the factors discussed
in the previous section, possibly including communications from other agents.
Agent 2 may act on the basis of receiving the message, possibly sending messages
to other agents. Thus, an adequate collection of interaction and relationship
p-assertions provides a connected trail of the process that led to a result. From
the result, R, shown in the figure we can follow the causal relationships and
interactions back to determine all the factors that ultimately caused it to be
as it is. Note that here, we are describing the actual interactions that an agent
engages in at run time. How to design agent interactions to best meet system
requirements has been addressed by others [1].



www.manaraa.com

AgentPrIMe: Adapting MAS Designs to Build Confidence 37

Fig. 4. Wrappers are adaptations to agents that automatically document incoming and
outgoing messages, and causal relationships, and send them to a provenance store

3.3 The Wrapper Adaptation

The p-assertions described above must be recorded in repositories so that users
can later query them. We call such repositories provenance stores. Such recording
of interaction and relationship p-assertions can be realised in a system by apply-
ing a wrapper to each agent that is doing the recording, as shown in Figure 4.
As messages come into or leave an agent, the wrapper records interaction
p-assertions regarding their content, and relationship p-assertions regarding their
causes.

3.4 Provenance

An important part of our approach is to use a common, open data model for
p-assertions. This means that all agents can independently and autonomously
record documentation of their activities in the same format, and a user can
examine and interpret this documentation without relying on implementation
details of those agents. The full data model is documented elsewhere [4].

By examining the provenance of a result, we can therefore determine the
procedure that was followed to produce it. In theory, this would allow us to check
such process qualities as the rigour of a scientific result, or whether businesses
with dubious ethical records were used in manufacturing a good. However, doing
so depends on the agents involved in a process accurately documenting what they
do, an unreasonable assumption in many domains. In the following section, we
show how AgentPrIMe tackles the problem of potentially dishonest agents.



www.manaraa.com

38 S. Miles et al.

4 Designing for Accuracy

In this section, we discuss the ways in which agents’ inaccuracy can obscure
process qualities, and how AgentPrIMe mitigates these problems through third-
party storage, accountability and corrobration. It should be emphasised that these
solutions do not guarantee accurate, honest documentation, but merely reduce
the possibilities for deception.

4.1 Design Levels

Mitigating for inaccuracy can be expensive, and not every application of Agent-
PrIMe needs to incur all of this expense. For instance, a multi-agent system may
be completely trusted not to maliciously produce incorrect assertions, e.g. if all
agents are owned by a single trusted organisation, but still may do so through
error. It is important, therefore, that AgentPrIMe allows developers to apply the
degree of mitigation they consider most appropriate for a given application.

We classify types of application, and the design requirements due to them,
into three levels, increasing in development cost. A reliable system is one in which
the agents are assumed always to record complete and accurate documentation,
or at least sufficiently complete and accurate that any mitigation would be more
costly than it is worth. A transparent system is one in which the agents cannot
always be trusted to assert correct information but for which there exist ways
to corroborate what they have asserted. An exploitable system is one in which
some agents are free to withold information about their activities or give false
information without being detectable. The latter two types of system will be
characterised more concretely in the following section.

It is important to note that the systems that need to be adapted to mitigate
inaccuracy are exactly those systems that users may suspect of recording inac-
curate documentation. The incentive for the designers of such systems to apply
the adaptations is that users can check whether they have been applied and will
trust the results produced by such systems on that basis. That is, regardless of
whether a system is reliable or not, a user can choose to trust results from that
system only if it is both (i) clear from a result’s provenance that it was produced
in a legitimate way, and (ii) clear from the provenance and other system com-
ponents described below that the designs were adequate to prevent inaccuracy.
AgentPrIMe, therefore, provides benefits to two parties:

– for the user, it provides a way to check that adequate safeguards were in
place to ensure the provenance is reliable; and

– for the system designer, it provides a way to give the necessary guarantees
of accuracy to a user.

4.2 Corroboration

We now characterise the difference between transparent and exploitable unreli-
able systems, and show how AgentPrIMe requires more adaptations to be applied
to the latter.



www.manaraa.com

AgentPrIMe: Adapting MAS Designs to Build Confidence 39

Returning to the causal chain shown in Figure 3, we note that for every
message in the system, two agents are involved: the sender and the receiver. If
both agents record interaction p-assertions documenting the fact and content
of the message they sent/received, then one agent’s assertion can be used to
verify the correctness of the other’s assertion. We say that each agent’s view of
the interaction provides corroboration of the other view. Therefore, where an
interaction involves one reliable agent and one unreliable agent, the latter’s view
of what occurred can be checked. Note, that this cannot apply to the internal
causal relationships: only an agent knows whether its actions were caused by a
particular goal, responsibility etc. We argue that the actions that are taken in
a system will tend to be more important than the intent behind them for the
end user, so that the lack of ability to corroborate internal information is not
critical.

The kinds of process that cause most problems are those that involve multiple
organisations, where each organisation owns a set of agents involved in the pro-
cess. This is problematic because one organisation can provide an honest facade
for another; for example, an apparently reliable shop may use an unethical sup-
plier. We depict such a scenario in Figure 5, in which Agent 3 in Organisation
2 produces result R partly on the basis of the operations of Agents 1 and 2 in
Organisation 1.

Organisations provide a unit of trust: agents can be grouped into organisations
such that all agents in an organisation are trusted independently from those in
any other organisation. If, in the process shown in Figure 5, Organisation 1
is trusted, then the system as a whole can be said to be transparent. This is
because every agent is either trusted or, if not, every interation they have in a
process is with a trusted agent and can therefore be corroborated by examining
the p-assertions of the trusted agent.

An alternative situation arises when Organisation 2 is trusted, but Organisa-
tion 1 is not. In this case, one of the agents’ assertions cannot be corroborated.

Fig. 5. Multiple organisations involved in a process

Fig. 6. Opaque organisations involve actions that cannot be verified



www.manaraa.com

40 S. Miles et al.

Fig. 7. Corroborating agents can be introduced to ensure a process remains transparent

The situation, from a user’s point of view, is shown in Figure 6: only Agents
2 and 3 produce p-assertions that can be relied on. In this case, we say that
Organisation 1 is opaque because part of its process, possibly a significant part
from the user’s perspective, is not reliably documented.

4.3 The Corroboration Adaptation

Applying AgentPrIMe to the case above causes additional agent interactions to
be introduced to the application process. As shown in Figure 7, the corroborating
agent is introduced into the process, so that instead of a direct interaction be-
tween Agents 1 and 2, this corroborating agent acts as a redirecting intermediary.
The corroborating agent must record its own documentation of its interactions,
and be trusted by a user to be of value. The agent may be part of an exist-
ing trusted organisation, such as Organisation 2, or may in a new organisation
created by the user.

4.4 The Third-Party Storage Adaptation

The second technique to mitigate inaccuracy is for agents to store documentation
in third-party provenance stores, trusted by both the system owner and the user.
These repositories should ensure immutability and longevity of the assertions
they contain. Therefore, users have assurance that if accurate data is recorded,
it cannot later be altered or deleted. Provenance stores independent from the
agents recording documentation is recommended for all types of system, even
reliable ones.

4.5 The Accountability Adaptation

The third technique is to ensure that it is possible to verify the origin of every
p-assertion recorded, i.e. which agent created it. This is important for every type
of unreliable system, including those that are unreliable through error rather
than malice, as it allows the faulty agents to be pinpointed within a system.
Accountability can be achieved by each agent applying a digital signature to



www.manaraa.com

AgentPrIMe: Adapting MAS Designs to Build Confidence 41

each p-assertion, with users able to validate a p-assertion’s signature when they
retrieve it from a provenance store (the store may also do its own checks).

This guards against a particular type of deception that applies to both trans-
parent and exploitable systems: an agent may assert something false but attempt
to make it appear that the assertion comes from another, trusted, agent. With-
out accountability, agents are free to give a completely false view of a process
without detection.

5 Applying AgentPrIMe

Applying the AgentPrIMe methodology fragment in the context of an agent-
oriented methodology requires that the developer knows both at which point to
apply it and what steps to take in doing so. With regard to the former point, we
have already said that AgentPrIMe is ideally applied at a particular point in the
extended methodology, when the design is sufficiently well developed to adapt,
but not so far developed that effort is wasted. In practice, given the adaptations
described above, this means the point at which (types of) agents have been
defined well enough to know the (types of) interactions they will take part in
and the causal chains their actions lead to. Depending on the methodology, some
adaptations may be best applied even later, when an agents internal structure
is defined.

Once a reasonable point in the methodology has been determined, the devel-
oper should consider each agent in turn and determine how to wrap the agent
to record p-assertions about its activity in a provenance store, preferably a third
party one. The form that such wrapping takes depends on technology: the aim
is for the agents logic to trigger the recording of p-assertions and anything that
achieves this aim is considered to be an instantiation of a wrapper adapta-
tion. Consideration of ensuring accuracy can then begin. First, where possible,
an agent should be adapted to sign its p-assertions. Second, each interaction
between agents should be considered and, where no agent would be able to
corroborate the contents of the interaction, a third party should be added and
interactions redirected through it. The choice of third party is based on the de-
velopers best guess as to what will be trusted by those others the system is likely
to interact with.

In terms of tool support, if an agents internal operations are made explicit,
for example as an architecture with plans, then it may be possible to automate
the modelling of causation in that agent.

6 Conclusions

AgentPrIMe is an extension applicable to existing agent-oriented methodologies
that gives users confidence in the results produced by designed systems. Devel-
opers applying AgentPrIMe to a design must determine how that design needs to
be adapted, firstly to record adequate documentation that exposes the qualities
of the process that produced some output of the system, and then to ensure that



www.manaraa.com

42 S. Miles et al.

the documentation itself is reliable through corroboration, independent storage
and accountability of agents.

The approach aims to be as methodology-neutral as possible, being applicable
regardless of the agent-oriented concepts that have been used in designing a
system. It does this by relying only on the agents and their interactions, that
are present in any multi-agent system, and then defining the causal relationships,
which define the processes they are involved in, in a system-independent way.

Four design adaptations are defined in this paper:

Wrapper Adaptation. Adapting agents (or agents of a given type) to record
documentation on what they have done and why.

Corroboration Adaptation. Adapting agent interactions that may be seen
as collusion so that an intermediary can provide collaborating evidence of
the communications.

Third-Party Storage Adaptation. Providing storage of documentation that
is trusted by both recording agents and users.

Accountability Adaptation. Adapting agents to sign data before recording
it for users to query.

In future work, we will investigate further uses of process documentation
recorded by multi-agent systems. For instance, it may be possible to deter-
mine whether agents have fulfilled their responsibilities and do not prevent other
agents exercising their rights, by examining the documentation recorded. Addi-
tionally, we will investigate how the assurances provided by our adaptations can
be integrated with the quantitative trust models prevalent in other agent-based
research to give an informative measure of reliability to users.

Acknowledgements

This work was supported in part by the Southampton-Chicago Activity (SOCA)
project (EPSRC reference EP/C528131/1). It was also supported in part by
the CONTRACT project, which is co-funded by the European Commission un-
der the 6th Framework Programme for RTD with project number FP6-034418.
Notwithstanding this fact, this paper and its content reflects only the authors’
views. The European Commission is not responsible for its contents, nor liable
for the possible effects of any use of the information contained therein.

References

1. Cheong, C., Winikoff, M.: Hermes: Designing goal-oriented agent interactions.
In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 16–27.
Springer, Heidelberg (2006)

2. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering.
International Journal of Software Engineering and Knowledge Engineering 11(3),
231–258 (2001)



www.manaraa.com

AgentPrIMe: Adapting MAS Designs to Build Confidence 43

3. Garcia, A., Kulesza, U., Sant’Anna, C., Chavez, C., de Lucena, C.J.P.: Aspects in
agent-oriented software engineering: Lessons learned. In: Müller, J.P., Zambonelli,
F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 231–247. Springer, Heidelberg (2006)

4. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An
architecture for provenance systems. Technical report, Electronics and Computer
Science, University of Southampton (October 2006),
http://eprints.ecs.soton.ac.uk/12023/

5. Guttenplan, S.: Introduction to Philosophy of Mind, chapter An Essay on Mind.
Oxford University Press, Oxford (1994)

6. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases.
Addison Wesley, Reading (2004)

7. Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: Allocating goals to agent roles during
mas requirements engineering. In: Padgham, L., Zambonelli, F. (eds.) AOSE 2006.
LNCS, vol. 4405, Springer, Heidelberg (2007)

8. Kumar, K., Welke, R.J.: Methodology engineering: a proposal for situation-specific
methodology construction. In: Challenges and strategies for research in systems
development, pp. 257–269. John Wiley & Sons Inc., New York (1992)

9. Luck, M., d’Inverno, M.: Engagement and cooperation in motivated agent mod-
elling. In: Zhang, C., Lukose, D. (eds.) DAI 1995. LNCS, vol. 1087, pp. 70–84.
Springer, Heidelberg (1996)

10. Miles, S., Munroe, S., Luck, M., Moreau, L.: Modelling the provenance of data
in autonomous systems. In: Proceedings of Autonomous Agents and Multi-Agent
Systems 2007, Honolulu, Hawai’i, May 2007, p. 8 (2007)

11. Munroe, S., Miles, S., Moreau, L., Valquez-Salceda, J.: Prime: A software engineer-
ing methodology for developing provenance-aware applications. In: Proceedings of
the Software Engineering and Middleware Workshop (SEM 2006), ACM Digital
(to appear, 2006)

12. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

13. Padgham, L., Winkoff, M.: Prometheus:a methodology for developing intelligent
agents. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 174–185. Springer, Heidelberg (2003)

14. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Automous Agents and Multi-Agent Systems 3, 285–
312 (2000)

http://eprints.ecs.soton.ac.uk/12023/


www.manaraa.com

Refining Goal Models by Evaluating System Behaviour

Mirko Morandini, Loris Penserini, Anna Perini, and Angelo Susi

Fondazione Bruno Kessler - IRST, Via Sommarive 18, I-38050, Trento, Italy
{morandini,penserini,perini,susi}@itc.it

Abstract. Nowadays, information systems have to perform in complex, hetero-
geneous environments, considering a variety of system users with different needs
and preferences. Software engineering methodologies need to cope with the com-
plexity of requirements specification in such scenarios, where new requirements
may emerge also at run-time and the system’s goals are expected to evolve to
meet new stakeholder needs.

Following an agent-oriented approach, we are studying methods and tech-
niques to design adaptive and evolvable information systems able to fulfill stake-
holders’ objectives.

In a previous work we defined an Agent-Oriented framework to design and
code system specifications in terms of goal models and we instantiated it in a
tool supported process which exploits the Agent-Oriented Software Engineering
methodology Tropos and the Multi-Agent Platform JADE/Jadex [11].

In this paper, we show how to use this framework to develop a system follow-
ing an iterative process, where the system execution allows enriching the system
specification given in terms of goal models.

Experimental evaluation has been performed on a simple example and lead
to the refinement of the designed goal model upon the analysis of the system’s
run-time behaviour.

1 Introduction

Information systems are today expected to perform in complex environments which
make computing resources available to anyone, at any time and anywhere. In these
scenarios, complexity comes from the variety of system users (including organizations)
with their needs and preferences, which tend to evolve according to the dynamic nature
of users in the network, and from the heterogeneity of the environment a system is
deployed in. Therefore, systems should be aware of users’ goals and able to choose the
most suitable behaviour from various alternatives.

These scenarios motivate research on practices and methodologies for software devel-
opment. Traditional software development models, which assume that the requirements
specification has been finalized before proceeding to design and then to implementation,
need to be replaced by more flexible iterative models, able to take into account that new
requirements may emerge also at run-time. Moreover, the traditional concept of software
maintenance has to be revised since systems are expected to evolve to meet the needs of
the changing environment rather than to preserve their original structure [8].

Multi-Agent Systems (MAS) provide candidate technologies for building software
with adaptivity and evolvability qualities [6], while recently proposed Agent-Oriented

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 44–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Refining Goal Models by Evaluating System Behaviour 45

Software Engineering (AOSE) methodologies offer a complementary paradigm for the
analysis of system requirements and design [4]. Some of them, such as GAIA [17] and
Tropos [1] offer concepts and models to analyse the system and its environment in terms
of agent organizations. Moreover, Tropos has been recently proposed as a methodology
to support “high-variability software design” through the explicit modelling of the dif-
ferent alternative design solutions to a given stakeholder goal (requirement) [7].

We are studying methods and techniques to design information systems with
qualities such as adaptivity and evolvability, following an Agent-Oriented approach.
That is, we conceive an information system as an open network of software agents
who interact with each other and with human/organizational agents in their operational
environment in order to fulfil stakeholder objectives. Concretely, we propose a
development framework which adopts MAS technology as implementation platform
and agent-oriented methods and techniques for the analysis and the specification
of system requirements and design. In [11,12] we instantiate this framework with
respect to the Tropos methodology and to the Jadex/JADE platform [14], and propose
a tool-supported process to derive agents that base on a Belief-Desire-Intention
architecture [15] from Tropos goal models.

In this paper, we show how this framework can be used to develop a system fol-
lowing an iterative process, in which the system execution allows to enrich the system
specification expressed in terms of goal models. From a goal-oriented system model we
derive agent skeletons automatically in a tool-based process. We execute the modelled
system, simulating system users and observing system behaviour in correspondence
to variability in user desires and in environmental conditions. The different MAS
behaviours can then be traced back to the specification of the alternatives in the goal
model, giving experimental evidence of the effectiveness of the proposed framework in
supporting traceability between run-time and design-time artefacts. Moreover, run-time
observations could lead to a refinement of the design. For instance contribution relation-
ships between model elements can be further qualified or quantitative analysis of system
qualities, which have been defined at design time in terms of system (soft)goals, can
be performed. We consider this work as a first step towards setting up feedback mecha-
nisms from run-time to the design, a core aspect in the development of adaptive systems.

The paper is structured as follows. In Section 2, we recall basic concepts of the pro-
posed development framework and describe the tool-supported process, which exploits
the Tropos methodology and the JADE/Jadex MAS platform. A simple travel agency
system is used as example to illustrate the approach. The system handles requests from
different customer categories and gives proposals for a full travel package, according
to user preferences. Experimental evaluations, based on a run-time simulation, are de-
scribed and discussed in Section 3. Related work is presented in Section 4 and conclud-
ing remarks in Section 5.

2 Background

2.1 Conceptual Framework

We adopt concepts from recently proposed AOSE methodologies [4] and from BDI MAS
research [6] to define an Agent-Oriented approach to system design and coding. The



www.manaraa.com

46 M. Morandini et al.

Belief-Desire-Intention (BDI) architecture, as proposed in [15], bases on three mental
concepts: beliefs which model the knowledge of an agent about himself and about its
environment, goals the agent can try to achieve, and intentions, sets of plans an agent
commits for execution to achieve a goal. Within our framework, we further use knowl-
edge level concepts such as those of agent, which can be social, organizational, human
or software and social dependency that defines the obligations of an agent to others.

The key part in the analysis and design stages is the so called Goal Model (GM).
Like in other approaches [5,16], in our framework a GM is a goal graph consisting
of a forest of AND/OR decomposed goals, along with inter-dependency links between
goals and means-end relationships between leaf-level goals and plans that represent a
way to achieve these goals. During requirements analysis, GMs make easier to model
stakeholders’ goals and their relationships, showing how they really affect the system
functionalities. Moreover, deriving an agent GM at architectural design allows designers
to model dependencies between the system agent goals and stakeholder goals.

More operative concepts are needed during software agents specification. We define
a capability as the sub-graph rooted in a leaf goal containing a set of means-end plans
with their inter-dependency relationships towards other goals. We call knowledge-level
design the process of building the higher level part of a GM and capability-level design
the process of refining leaf goals into plan means-end and inter-dependency relation-
ships. This last design step represents a way to operationalize goals, that is, to define
the possible behaviours of an agent. Therefore, a GM can be also seen as a schema for
the possible behaviours an agent can use to fulfil its goals.

More formally, let E be the set of events1 an agent can perceive, C the set of con-
straints (e.g. user preferences and system QoS), G the set of goals an agent can achieve,
Cp a set of capabilities an agent can exploit, and GL ⊆ G the set of leaf-level goals an
agent can operationalize, we give the following definitions:

Behaviour-Schema. BS is the set of all possible type of behaviours an agent can play
BS = {Bh1(X), ..., Bhn(X)}, where each Bhi is a sub-schema representing a set of
behaviours associated to a specific set of events and constraints. Formally, X is a list
of attributes X = {Events, Constraints, Goals}, where Events assumes values in
2E; Constraints assumes values in 2C , and Goals assumes values in 2GL .

Behaviour-Schema Function. A behaviour-schema function fBh associates a set of
events and constraints to a set of leaf-level goals: fBh : 2E × 2C → 2GL . It allows to
build the Bh(X) specific to an occuring event and the constraints perceived.

Capability Function. For each sub-schema Bh, there exists a capability function
fCp : Bh → 2Cp such that, giving in input a behaviour bi, retrieves the different sets
of Capabilities an agent can execute to exhibit this behaviour.

Behaviour-schema- and capability-functions allow to query the behaviour-schema
and a GM structure about agent properties with reference to concrete instances of
behaviours and capabilities, each time an event occurs or environmental conditions
change. For example, each time an agent receives a request message (an event), it

1 Examples are goal triggering messages.



www.manaraa.com

Refining Goal Models by Evaluating System Behaviour 47

interprets it in order to extract the goals to be triggered, and concurrently perceives
environmental conditions (C) to better choose the right behaviour.

2.2 Tool Supported Framework

In [11,12] we instantiate the described framework using the Tropos methodology for
analysis and design, and JADE and the Jadex BDI agent platform for the implemen-
tation. The Tropos agent-oriented methodology borrows modelling and analysis tech-
niques from goal-oriented requirements engineering approaches and integrates them
into an agent-oriented paradigm (see [1] for details). The main idea in Tropos is to
support knowledge level specification by providing a conceptual modelling language
which offers concepts like actor, goal, plan, resource, capability, and social depen-
dency between actors. The methodology provides a graphical notation to depict views
of a model, along with analysis techniques and supporting tools [13].

Fig. 1. Tropos architectural design: a fragment of knowledge and capability levels from the goal
model of agent TravelAgent

In the rest of this section, we give an overview of the framework by defining ba-
sic process artefacts and their role in the main process stages, as depicted in Figure 2.
Moreover, we give more details on how a GM is automatically mapped into a BDI
agent specification that can, at execution time, give useful feedback to refine the orig-
inal design. To illustrate our approach we take as an example a simple travel agency
system, TravelAgent. The system handles requests from several classes/categories of
customers (e.g. business customers, vacation customers or students) and gives propos-
als for a full travel package, according to the users’ preferences. These preferences are
modelled through softgoals. For example, as illustrated in Figure 1, possible softgoals
to characterize a customer category are reasonable cost, good comfort, and relax



www.manaraa.com

48 M. Morandini et al.

Fig. 2. Process’s artefacts and their role in Tropos. Feedback from system execution to design can
be obtained upon observing the system behaviour.

vacation. The agent tries to achieve them exploiting different alternatives for journey
and accommodation and selecting suitable additional activities.

Process Artefacts. Adopting Tropos in our framework allows us to represent MAS
with GMs, resulting from the analysis of each actor’s point of view. Tropos GMs are
based on the i* notation [16]. They are represented in terms of a forest of AND- and
OR-decomposed goals, along with lateral contributions labelled +, − (for partial pos-
itive or negative contribution to the satisfaction of a goal) or ++ (for strong positive

or negative contribution). For example, if g1
++−→ g2 and g1 is fulfilled, so is g2. Addi-

tionally a GM contains means-ends relationships among plans and goals, to define the
means to satisfy a goal.

In Tropos, GMs are built during requirements analysis to characterize domain stake-
holders, their needs and their dependencies from the system-to-be. In the architectural
design phase they are used to detail software agents. As this paper work focuses on
getting feedback to design-time from the generated agents, here we consider mainly
GMs at the Tropos architectural design phase. An example is given in Figure 1, which
illustrates a fragment of a GM for the TravelAgent, which represents the main actor of
the software system under development.

At Tropos architectural design phase, a GM represents the agent intentionality in
terms of how the agent perceives the environment, applies strategies to fulfil its re-
sponsibilities, and chooses alternative ways to adapt to requirements changes. In other
words, like a human being, the agent perceives the environment and chooses a suit-
able behaviour. Notice that the set of possible agent behaviours can be characterized
in terms of perceivable events, environmental conditions and agent goals by applying
the behaviour-schema function, fBh, to the GM. The actual behaviour results from the
execution of the specific capabilities thanks to the capability function, fCp.

Figure 1 depicts the two different abstraction levels that characterize the agent de-
sign: knowledge level and capability level. The knowledge level refers to the goal
AND/OR decomposition part of the GM that contributes to the description of the be-
haviours the specific agent role can play. The capability level brings about the exe-
cutable part of an agent and its connection to the agent’s leaf goals.

Capabilities (cp ∈ Cp, where Cp is the set of all capabilities of the agent) represent
the glue between the two agent modelling levels. A capability is defined by the concepts



www.manaraa.com

Refining Goal Models by Evaluating System Behaviour 49

of ability and opportunity. The ability refers to the plans for achieving a given goal and
is specified by a means-end relationship between the goal and the plan. The opportunity
represents user preferences (contributions between goals and plans to softgoal, c ∈ 2C)
and environmental conditions represented by message events e ∈ 2E that affect the
agent’s beliefs. At run time, these preferences and conditions can enable or disable the
execution of an ability.

Following the design process sketched in Figure 2, a capability table extracted from
the GM, and UML 2.0 diagrams, extracted by model transformation from the GMs
capability level, are used to generate JADE code in a capability library. The structure
of an agent’s reasoning part, that relies on a BDI architecture, can be automatically
generated from the knowledge level of the GM.

Table 1. Fragment of TravelAgent capability Table

Capabilities Means End(goal,plan) List of Contributions
cp1 provide room, {reasonable cost --;good comfort ++;

search hotel relax vacation --}
cp2 provide room, {good comfort +;relax vacation +}

search BB
cp3 provide camping, {reasonable cost ++;good comfort --;

search camping relax vacation --}
... ... {...}

Table 1 depicts a fragment of the capability table for the TravelAgent example,
which was obtained from the GM in Figure 1. If the goal select accommodation
is triggered, as this is OR-decomposed in the two sub-goals, the agent TravelAgent
has two possible behaviours to satisfy the triggered goal: one that can achieve the goal
provide room (by cp1 or cp2) and one that can achieve the goal provide camping
(by cp3).

The design artefacts (GMs, capability table, activity- and sequence diagrams) drive
agent code generation. Specifically, our tool supported framework allow us to generate
a library of capabilities from the capability table and the activity- and sequence dia-
grams, as detailed in [12]. Executable skeletons for the BDI agents, which are able to
use the capabilities in this library, can be automatically generated from the knowledge
level specification contained in the GM, through a mapping of the GM structures into a
BDI agent description for the Jadex framework, specified by an Agent Description File
(ADF) in XML format, augmented with some Java code2.

The implementation consists of Jadex BDI agent definitions along with their capa-
bilities. For the simulation we run instances of these agent definitions. The agents are
queried by simulated users sending request-messages and the resulting behaviour is
then used to give feedback to the design artefacts.

Coding the GM into BDI Agents. In order to endow the generated BDI agents
with all the information included in the GM, the specification for the mapping process
has been conducted along two phases: basic concept mappings (goals, softgoals, plans,
resources) and structure mappings (AND/OR goal dependencies, means-end links,

2 Further details can be found in [14].



www.manaraa.com

50 M. Morandini et al.

contribution links, delegation and dependency links). A sketch of the mapping is given
below, while we remind the interested reader to see [11] for more details.

Goal. As a Jadex-goal can be only triggered by a Jadex-plan, a Tropos goal is mapped
to a pair of < goal, plan > in Jadex.

Softgoal. Softgoals are considered as abstract entities related more to beliefs and desires
than to goals and plans. In our prototype they are mainly used to define opportunities
for the selection of the next goals or plans to pursue along the GM. That is, they model
domain constraints c ∈ C to drive the selection of the most convenient behaviour b ∈
Bh(X), once an event e ∈ 2E occurs

A softgoal is therefore mapped only to a belief base entry, which contains its name
and a value that may be changed by the user at run-time. This value expresses the
softgoal’s actual importance and may change from time to time to reflect environmental
changes.

Plan. Tropos plans that have a direct means-end relationship to leaf goals (root-level
plans) are mapped to Jadex plans according to our definition of capability.

AND-decomposition. If an AND-decomposed goal is activated, all subgoals have to
be dispatched. The following Jadex solution was adopted: an AND-decomposed goal
is set as trigger for exactly one plan, called AND-dispatch-plan (Figure 3). In the plan
body, all subgoals have to be dispatched in (random or user defined) sequence. If one
subgoal fails, the process has to be stopped and a failure has to be returned. For this first
proposal, on failure no techniques for compensation of already executed actions have
been considered.

An analogous mapping for the OR-decomposition is described in [11], while Tro-
pos means-end relationship are mapped one-to-one to the Jadex plan triggering mech-
anism. Having defined no conditions, every time the associated goal is activated, plan
execution is triggered. Notice that, in this case the Jadex plans are root-level plans in
Tropos, namely those required to build up agent capabilities. Jadex supposes that every

Fig. 3. Mapping of the Tropos goal AND-decomposition into an equivalent Jadex BDI structure



www.manaraa.com

Refining Goal Models by Evaluating System Behaviour 51

applicable plan for a goal is able to satisfy that goal completely. Therefore, if more
than one plan is applicable, Jadex meta-level reasoning is exploited to select the appro-
priate plan, as in the case of alternative paths in OR-decomposition. The selection of
alternatives can be guided by preconditions and by softgoal contributions.

The generated agent can evaluate costs for every goal and plan. They include soft-
goal contribution and importance: negative contributions cause higher cost, lower im-
portance of the relative softgoal to the user can alleviate this penalty. Moreover, each
generated agent endows knowledge about its goal relationships from the GM in its be-
lief base: AND/OR decompositions, dependencies, delegations, and contribution links.

3 Experimental Setting and Evaluation

This Section describes a general experimental setting, suitable to be applied in several
kinds of scenarios, and the results obtained.

The objective of our experiment is twofold: on one hand, we aim at verifying the
behaviour of a MAS with respect to the designed specifications; on the other hand, we
aim at supporting the refinement (such as the introduction of new relationships) of the
GM by exploiting information retrieved from the simulation.

We refer to the TravelAgent example, partially depicted in Figure 1. The main idea
is to focus on the preferences of different customer categories recognized by the system
at run-time by profiling users from the set of queries they submitted. We observe the
system while it is adapting to each category, trying to maximize customer satisfaction
(customer’s softgoals delegated to the TravelAgent system) and providing evidence of
how such softgoals have different impact to the system’s own internal softgoals (e.g.
maximize profit).

3.1 Experimental Setting

We refer to the fragment of GM shown in Figure 1. Suppose that a generic Customer
could be distinguished into three categories: business customer (BC), vacation customer
(VC) and student customer (SC), each one composed by individuals having similar
preferences and similar requests to the travel agency system. The simulation assumes
that these categories will be recognized by the system only at run-time.

In the simulation, the Customer (in the following also user) interacts with the sys-
tem by submitting sets of queries that correspond to set of activation events for sys-
tem goals (belonging to 2E). Moreover, the system is supposed to acquire information
from the environment in order to provide user profiling. This would allow to activate
sets of softgoals that represent the users’ preferences (belonging to 2C). Basing on
this information our system is able to assume the best-suited behaviour, activating all
necessary capabilities. Table 2 shows the components for the run-time choice process
of sets of capabilities. In particular, the second column represents the input elements.
The former is given as a set of queries made by the different Customer Categories (i.e.
CC = {BC, V C, SC}), e.g. the business customers’ query will be qBC , whereas the
latter is given by the set of user preferences and constraints (e.g. CBC ) perceived by the
system via an user profiling activity or by user-guided configuration. The third column



www.manaraa.com

52 M. Morandini et al.

Table 2. System inputs (CC and 2E × 2C ) and outputs (Bh(X) and 2Cp) for the simulation,
following the definition recalled in Section 2.1

User class
(CC)

Trigger events
(2E × 2C )

Behaviours
(Bh(X))

Capabilitiy
sets (2Cp)

BC qBC
1 , CBC bBC

1 CpBC
1

. . . . . . . . .

qBC
m , CBC bBC

m CpBC
m

VC qV C
1 , CV C bV C

1 CpV C
1

. . . . . . . . .

qV C
n , CV C bV C

n CpV C
n

SC qSC
1 , CSC bSC

1 CpSC
1

. . . . . . . . .

qSC
k , CSC bSC

k CpSC
k

contains the set of behaviour instances suitable for each category (e.g. bBC
i ) related to

the queries (e.g. qBC
i ), while the fourth column contains the capability sets (e.g. CpBC

i )
able to realize the corresponding behaviours.

To choose appropriate capabilities, the system exploits the behaviour-schema func-
tion fBh and the capability function fCp, defined in Section 2. In particular, the first
line of the table refers to a single query made by an user that belongs to the BC cat-
egory. Let us assume that such a category is characterized by a set QBC of m pos-
sible queries (QBC = {qBC

1 , ..., qBC
m }) and by a set CBC of preferences (CBC =

{sgBC
1 , sgBC

2 , ...}), which are inputs for the application of the behaviour-schema func-
tion. With this input, the system is able to compute the set of possible behaviours bBC

1−m,
that can be exploited in order to accomplish user requests.

The application of the capability function fCp to a behaviour bi allows the system to
retrieve the different sets of capabilities that can be activated in order to operatively ex-
ecute this behaviour. The capability to execute can then be selected according to the op-
portunities. This calculation process can be repeated for all user categories in the model.

A domain expert would be able to define contribution relationships between each
capability and internal softgoals, such as maximize profit, but she cannot know a-priori
which capabilities will be executed to satisfy a user query that occurs to the system.

In Table 3 sample values for the importance of the contributions to softgoals adopted
to characterize the customer categories are given; those values refer to the three different
classes of customers and are expressed via numeric values.

We prepared the experiments, defining a set of queries for every different customer
category and identifying sets of softgoals that are typical for them. Table 4 gives ex-
amples for sets of queries for the three classes of users we considered. Moreover, for

Table 3. Softgoals used by the system to profile the user preferences. These values are supposed
to be given by domain experts.

Ci Vacation Customer Student Customer Business Customer
good business travel 0 0 1
good comfort 0.6 0.2 1
action vacation 0.4 1 0
good time utilization 0.3 0 1
reasonable cost 0.6 1 0.1
relax vacation 0.6 0.3 0



www.manaraa.com

Refining Goal Models by Evaluating System Behaviour 53

Table 4. Queries that characterize each customer category

Query Vacation Customer Student Customer Business Customer
q1 give proposals give proposals give proposals
q2 provide camping, car journey, prop. act. propose activities provide room, flight journey
q3 provide room, train journey provide room, flight journey select journey
q4 select accommodation camping, train journey select accommodation

Table 5. Contribution values between each capability and the internal softgoals

Capability Contribution to
maximize profit

Contribution to maxi-
mize travel miles

search hotel 0.8 0
search BB 0.4 0
camping 0.3 0
eurostar train 0.2 0.3
intercity train 0.1 0.2
business flight 0.9 1
low cost flight 0.2 0
gastronomy 0 0
nightlife 0 0
... ... ...

Table 6. Contribution relationships among capability groups and internal system softgoals

Query Sets of Capabilities sgint1 . . . sgintl
qBC
1 CpBC

1 val1,1 . . . val1,l

. . . . . . . . . . . . . . .

qBC
m CpBC

m valm,1 . . . valm,l

favg(val1,1 . . . valm,1) . . . favg(val1,l . . . valm,l)

each capability (cp), we define its contribution towards the internal system softgoals
(sgint1, . . . , sgintl), as illustrated in Table 5.

Table 6 can be built only after running the system along with simulated inputs and
getting information on which set of capabilities where executed by the system to satisfy
user queries. Specifically, the table shows the schema of the relationships among sets
of capabilities and internal softgoals (sgint1, . . . , sgintl), for each agent. These values
are then used to compute the cumulative contribution of the run-time sets of capabilities
cp, belonging to the selected behaviour bi, to a given internal softgoal, via the functions
favg(val1,j . . . valm,j) (at the bottom of the table). In our experimental setting we used
the function:

avg(val1,J . . . valm,J) =
m∑

i=1

(vali,J )/m (1)

Notice that an analysis by simulation does not cope with the possible contribution
produced by all the different capability groupings. On the contrary, the simulation will
converge towards the only sets of capabilities requested by the real customer categories.

3.2 Results and Discussion

After the simulation, the set of data related to the experiment for the TravelAgent sce-
nario has been collected. According to our first objective, we are able to monitor the



www.manaraa.com

54 M. Morandini et al.

system behaviour (b), each time a query (e.g. qBC
4 ) occurs, along with some user pref-

erences (e.g. CBC={good comfort}), verifying that b belongs to the GM behaviour
schema (b ∈ Bh(X)). Specifically, we can observe that the system has the ability to
adapt its behaviour to best accommodate with the current customer category. For exam-
ple, let us assume that qBC

4 will trigger the system goal select accommodation, along
with the softgoal good comfort. Now, the system is able to navigate the GM in order
to maximize the user preference modelled by this softgoal.

Looking at the GM fragment illustrated in Figure 1, we can see that the goal select
accommodation has two alternative ways to be achieved, i.e. provide room and pro-
vide camping. The system will first try to select provide room, because its capabilities
(characterized by the two plans search hotel and search BB) give the biggest contri-
bution to the given user preference. The same procedure will be used in a next step to
discriminate between the two available capabilities, this time resulting in the selection
of search hotel.

These experiments confirmed the effectiveness of the framework in supporting trace-
ability between run-time and design-time artefacts.

To meet our second objective, we simulate the execution of a set of user queries and
preferences in order to revise softgoal relationships in the GM. Table 7 shows the sets of
capabilities activated by the system, i.e. the behaviour instances it selected at run-time,
as a response to the simulated user queries described in Table 4. In Table 7, each row
specifies a query from a particular category of users (BC, VC and SC). Contributions
to maximize profit are calculated by summing the value of each capability contribu-
tion as indicated in Table 5, e.g. in the case of CpBC

1 : eurostar train + search hotel +
gastronomy = 0.2 + 0.8 + 0 = 1.

The results of these queries allow to observe how the real (in our case simulated)
customer preferences affect system behaviour.

The capability groups corresponding to the different behaviours of the TravelAgent
can then be used to add or quantify Tropos contribution links.

Figure 4 A), shows the values of favg computed according to 1, as shown in Table 7,
considering the internal softgoal maximize profit. In Figure 4 B), a softgoal customer
satisfaction was introduced to aggregate the softgoals relevant to a specific customer

Table 7. Capability groups associated to every query at run-time

Query Sets of executed capabilities Contribution to maximize profit
qBC
1 CpBC

1 : eurostar train, search hotel, gastronomy 1
qBC
2 CpBC

2 : business flight, search hotel 1.7
qBC
3 CpBC

3 : eurostar train 0.2
qBC
4 CpBC

4 : search hotel 0.8 favg = 0.925

qV C
1 CpV C

1 : low cost flight, search BB, culture 0.6
qV C
2 CpV C

2 : use own car, camping 0.3
qV C
3 CpV C

3 : intercity train, search BB 0.5
qV C
4 CpV C

4 : search BB 0.4 favg = 0.45

qSC
1 CpSC

1 : low cost flight, search camping, nightlife 0.5
qSC
2 CpSC

2 : nightlife 0
qSC
3 CpSC

3 : low cost flight, search BB 0.6
qSC
4 CpSC

4 : intercity train, camping 0.4 favg = 0.375



www.manaraa.com

Refining Goal Models by Evaluating System Behaviour 55

Customer
Satisfaction

Contribution to
maximize profit

BC 0.925
VC 0.45
SC 0.375

A) B)

Fig. 4. A) Quantifying the contribution relationships between each customer satisfaction soft-
goal and the maximize profit softgoal; B) visualizing the results in terms of the Tropos goal
model refinement. The labels define the new relationship values.

category. Contributions between them and the internal softgoal maximize profit can be
drawn and quantified by the contribution values computed at run-time.

This result can contribute both to validate existing contribution links and to add new
ones. In the case run-time feedback is in contrast with the design-time models, a revision
of the GM could be required.

In a subsequent step, these new relations could be used by the system to adapt its
strategic behaviours, not only according to the user preferences (i.e. softgoal customer
satisfaction), but also according to its internal organizational objectives (i.e. softgoal
maximize profit), following a trade-off for the achievement of this two softgoals.

4 Related Work

Different research lines are of interest to the work described in this paper. Here we focus
on research in AOSE methodologies, which aims at supporting traceability between
process artefacts, and research on methods for evaluating design strategies.

Along the first research line, we shall mention the Prometheus methodology [9],
which makes use of goal models to describe system requirements. Analogous to [1],
after building a goal model, the designer identifies those goals that are related to sys-
tem functionalities (by the use of descriptors) and delegates them to specific system
actors. Then functionalities are grouped to characterize scenarios, namely sequence of
steps (functionalities) in order to achieve a goal. Notice that, this grouping mechanism
is also used to determine different agent types (roles). Agents’ awareness about their
goal model is limited in Prometheus. For example, designed agent behaviour is mainly
reactive rather than proactive and deliberative; the agent cannot automatically reason
on its goal model in order to deal with failures and to choose alternative behaviours.
Moreover, also traceability from and to design artefacts is not supported.

Hermes [2] aims at overcoming the weak points of the above-mentioned methodol-
ogy, considering the goal model a core element of the implemented agent. In Hermes,
generated BDI agents are aware of their goal model, called Interaction Goal Hierarchy
Diagram, which is used to characterize behavioural strategies to cope with social com-
mitments. This gives a more flexible approach in respect to traditional message-centric



www.manaraa.com

56 M. Morandini et al.

agent interaction approaches. Hermes needs further research in order to deal with a
complete design framework, actually it does not cover the requirements analysis and
architectural design phases.

Along the second research line, several approaches have been proposed to evaluate
the different design strategies used in a GM, e.g. to achieve goals [3,10]. In [10] the
authors propose three different evaluation criteria (symbolic, scenario based, and quan-
titative) to characterize the cooperation strategies of an agent-based P2P system. While
the symbolic and scenario based criteria are fulfilled at design time, the quantitative
criterion takes advantage from run-time results. In particular, the symbolic evaluation
criterion is elaborated through analysis of the contribution links in the agent GM. A sub-
stantial difference to our approach is that their evaluation system has not been automat-
ically generated from design-time artefacts (e.g. GM). Besides, they have not discussed
how to correlate the run-time feedback to design-time GM.

The approach presented in [3] proposes a formal framework to reason on generic
GMs, namely not only on those related to software systems. Specifically, the authors
adopt some well-known algorithms to navigate the GM relationships, proposing an as-
sessment criterion to propagate contribution values (labels) in order to verify the goal
achievement. The analysis is called qualitative if the labels range in {++, +,−,−−},
while it is called quantitative if the labels assume numeric values. The most significant
difference to our framework is that their analysis framework works only when applied
to a GM at design-time, while our approach considers run-time as a principal source of
feedback to the design.

5 Conclusions and Future Work

In this paper we described an Agent-Oriented framework for developing systems with
qualities such as adaptivity and evolvability. We showed how information gained from
the execution of a system can be used to refine the original design.

As example, we modelled a simple travel agency system. The system handles re-
quests from different customer categories and gives proposals for a full travel package,
according to user preferences. We tested our approach by simulating an environment
where several categories of users, which are characterized by their own preferences and
typical requests, interact with the MAS. We observed the behaviour of the system in
order to verify that it is compliant with the designed specifications. This confirmed the
effectiveness of the framework in supporting traceability of Tropos concepts between
run-time and design-time artefacts. Moreover, starting from the run-time behaviour of
the system in response to the user queries, we described a way to refine and extend the
relationships among a set of user preferences and the internal goals of the system.

We believe that this is a first step towards defining feedback mechanisms from the
real execution of the system back to design.

As future work we will revise the proposed framework, formalizing it and investigat-
ing on some AI technique which will allow the system agent to automatically discrimi-
nate the customer category (i.e. by user profiling) from a set of input queries. Moreover
we aim at experimenting the framework in a real environmental setting.



www.manaraa.com

Refining Goal Models by Evaluating System Behaviour 57

References

1. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

2. Cheong, C., Winikoff, M.: Hermes: Designing Goal-Oriented Agent Interactions. In: Müller,
J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, Springer, Heidelberg (2006)

3. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with Goal Models. In:
Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, Springer,
Heidelberg (2002)

4. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea Group Inc.
(2005)

5. Jennings, N.: Foundations of Distributed Artificial Intelligence, chapter Coordination Tech-
niques for Distributed Artificial Intelligence. Wiley-IEEE (1996)

6. Jennings, N., Sycara, K., Wooldridge, M.: A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)

7. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards Requirements-Driven Au-
tonomic Systems Design. In: Design and Evolution of Autonomic Application Software
(DEAS 2005) at ICSE 2005 (2005)

8. Norvig, P., Cohn, D.: Adaptive software. PC AI 11(1), 27–30 (1997)
9. Padgham, L., Winikoff, M.: Prometheus: A practical agent-oriented methodology. In:

Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, Idea Group (2005)
10. Penserini, L., Liu, L., Mylopoulos, J., Panti, M., Spalazzi, L.: Modeling and Evaluating Co-

operation Strategies in P2P Agent Systems. In: Moro, G., Koubarakis, M. (eds.) AP2PC
2002. LNCS (LNAI), vol. 2530, Springer, Heidelberg (2003)

11. Penserini, L., Perini, A., Susi, A., Morandini, M., Mylopoulos, J.: A Design Framework
for Generating BDI-agents from Goal Models. In: Sheory, O., Huhns, M. (eds.) AAMAS
2007, 6th International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems, Honolulu, Hawai’i (2007), Extended version available as ITC-irst TR200601002 at:
http://sra.itc.it/images/sepapers/bdiagents goalmodels.pdf

12. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Intentions to Software
Agent Implementations. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp.
465–479. Springer, Heidelberg (2006)

13. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modelling. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167–178. Springer,
Heidelberg (2006)

14. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In: Bordini, J.D.R.,
Dastani, M., Seghrouchni, A.E.F. (eds.) Multi-Agent Programming, vol. 9, pp. 149–174.
Springer Science+Business Media Inc., USA (2005) (Book chapter)

15. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture. In: KR, pp.
473–484 (1991)

16. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis, University
of Toronto, Department of Computer Science, University of Toronto (1995)

17. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The gaia
methodology. ACM Transactions on software Engineering and Methodology 12(3), 317–370
(2003)

http://sra.itc.it/images/sepapers/bdiagents_goalmodels.pdf


www.manaraa.com

A Goal-Oriented Software Testing Methodology

Duy Cu Nguyen, Anna Perini, and Paolo Tonella

SRA Division / ITC-irst
Via Sommarive, 18
38050 Trento, Italy

{cunduy,perini,tonella}@itc.it

Abstract. Agent-Oriented Software Engineering (AOSE) methodolo-
gies are proposed to develop complex distributed systems based upon
the agent paradigm. The natural implementation for such systems has
usually the form of Multi-Agent Systems (MAS). As these systems are
increasingly applied in mission-critical services, assurances need to be
given to their owners and users that they operate properly. Although
the relevance of the link between requirements engineering and testing
has long been recognized, current Agent-Oriented Software Engineering
methodologies partially address it. Some of them offer specification-based
formal verification, allowing software developers to correct errors at the
beginning of the development process, others exploits Object-Oriented
(OO) testing techniques, upon a mapping of agent-oriented abstractions
into OO constructs. However, a structured testing process for AOSE
methodologies that complements formal verification is still missing.

In this paper we introduce a testing framework for the AOSE method-
ology Tropos. It specifies a testing process model that complements the
agent-oriented requirements and design models and strengthens the mu-
tual relationship between goal analysis and testing. Furthermore, it pro-
vides a systematic way of deriving test cases from goal analysis. We call
this approach goal-oriented testing.

1 Introduction

The changing of organizational architecture and the use of Internet-based ap-
plications make software systems more and more complex. These systems often
involve variety of users and heterogeneous platforms. They need to be evolved
continuously in order to meet the changes of business and technology. In some
circumstances, they need to be autonomous and adaptive for dealing with dif-
ferent preferences and pervasive amount of information.

As these systems are increasingly taking over operations in enterprise man-
agement and financing, assurances need to be given to their owners and their
users that these complex systems operate properly. This calls for an investigation
of suitable software engineering frameworks, including requirements engineering
and testing techniques, to provide high-quality software development processes
and products.

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 58–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

A Goal-Oriented Software Testing Methodology 59

The strong link between requirements engineering and testing have been com-
monly recognized [11]. First, designing test cases early and in parallel with re-
quirements helps discover problems early, thus avoiding implementing erroneous
specification. Secondly, good requirements produce better tests. Moreover, early
test specification produces better requirements as it helps clarify ambiguity in
requirements. The link is so relevant that considerable effort has been devoted
to what is called test-driven (or test-first) development. In such approach, tests
are produced from requirements before implementing the requirements them-
selves [1].

Research in AOSE mainly addresses development issues in software agents and
MAS. Several AOSE methodologies [12] have been proposed. Some of them offer
specification-based formal verification, allowing software developers to detect
errors at the beginning of the development process (e.g. Formal Tropos [10] and
[7]). Others borrow Object-Oriented (OO) testing techniques to be exploited
later in the development process, upon a mapping of agent-oriented abstractions
into OO constructs (e.g. PASSI [6] and INGENIAS [14]). However, a structured
testing process for AOSE methodologies that complements formal verification is
still missing

In this paper, we propose a testing framework that takes into account the
strong link between requirements and test cases, following the V-Model [16]. We
describe the proposed approach with reference to Tropos [4] and consider MAS
as a target application of the methodology. In analogy with OO approaches in
which test cases are derived from use-case requirements models, we investigate
how to derive test cases from Tropos requirements goal-models. We call this
approach Goal-Oriented (GO) testing.

Specifically, the proposed methodology contributes to the existing Tropos
methodology by providing: (i) a testing process model, which complements the
Tropos methodology and strengthens the mutual relationship between goals and
test cases; (ii) a systematic way for deriving test cases from goal analysis.

The remainder of the paper is organized as follows. Section 2 recalls basic
elements of the Tropos methodology and introduces related work. Section 3
discusses the proposed methodology, a testing model, goal types, test types,
test derivation, and structure of test suite. An example that illustrates how to
derive test suites is presented in Section 4. Finally, Section 5 gives conclusion
and describes our future work.

2 Background and Related Work

2.1 Background on Tropos

Tropos is an agent-oriented software engineering methodology [4] that adopts a
requirement-driven approach, that is domain and system requirement analysis
plays a pivotal role in the development process. In Tropos , the notion of agent
and all related mentalistic notions (for instance goals, plans, and resources)
are used in all phases of software development, from early analysis down to
implementation.



www.manaraa.com

60 D.C. Nguyen, A. Perini, and P. Tonella

The methodology provides a conceptual modeling language based on the i*
framework [20], a goal analysis technique and a diagrammatic notation to build
views on a model. Basic constructs of the language are those of actor, goal, plan,
softgoal, resource, and capabilities. Dependency links between pairs of actors
allow to model the fact that one actor depends on another in order to achieve a
goal, execute a plan, or acquire a resource and can be depicted in actor diagrams.
As an example, Fig. 1 shows how those constructs are used to model a MAS that
supports users (such as researchers) during bibliographic research. Both the user
and the system are represented as actors (circles), user needs are represented
in terms of goal dependencies from the actor Researcher to the system actor
BibFinder, e.g. by the hard goal Find Bib and the softgoal Fast and efficient.
Details of this example are discussed in Section 4.

Find bib

Fast and efficient

Find Bib

Manage Local Bib

Interface

From existing files

From the Internet

Auto-extract BibTeX

Exchange BibTeX with other BibFinders

Fast and efficient

Legend

Plan

Hard goal 1

Hard goal

Hard goal 2

Soft goal

+
+

+

Hard goal 1

Hard goal

Hard goal 2

Actor

Actor

H Goal

Means-end

OR decomposition AND decomposition

Contribution

Dependency

BibFinder

Researcher

Fig. 1. An example of late requirements analysis in Tropos. The actor Researcher
delegates two goals Find Bib, and Fast and efficient to the system actor BibFinder.
BibFinder then analyzes those two goals in order to achieve them.

In Tropos , goals are classified into hardgoals and softgoals, the latter has no
clear-cut definition and/or criteria as to whether they are satisfied. Softgoals are
particularly useful to specify non-functional requirements. Goals are analyzed
from the owner actor perspective through AND, OR decomposition; means-
end analysis of plans and resources that provide means for achieving the goal
(the end); contribution analysis that points out hardgoals and softgoals that
contribute positively or negatively to reaching the goal being analyzed.

2.2 Related Work

Agent verification can be classified into static and dynamic verification. Among
work on static verification, Bordini et al. [3] presented an approach to the verifica-
tion of MAS implemented in AgentSpeak. MAS specifications were transformed



www.manaraa.com

A Goal-Oriented Software Testing Methodology 61

into Promela or Java, and model checkers i.e. Spin and JPF (a general purpose
Java model checker) were then used to verify the properties that those systems
needed to satisfy. Benerecetti et al. [2] introduced a multi-agent temporal logic
that extended temporal logic for formalizing BDI attitudes of agent. They then
proposed MAFSM (Multi-Agent Finite State Machine) and a model-checking
algorithm for verifying agent properties formalized in that logic on a MAFSM.

Recent researches on dynamic verification (testing) of MAS have mainly in-
vestigated monitoring MAS at run-time in order to observe abnormal behaviors.
Coelho et al. [5] focused on unit testing (i.e. single agent testing) with the help of
mock agents that simulated real agents that the agent under test communicated
with. A monitoring agent has been involved to monitor the interactions among
agents. Poutakidis et al. [15] used knowledge from diagrams that specified com-
munication protocols during the architectural design phase to monitor execution
and detect problems of a MAS. Dikenelli et al. [19] proposed a test-driven MAS
development approach that supports iterative and incremental MAS construc-
tion. A testing framework, which is built on top of JUnit and Seagent [9], is
used to support the approach. The framework allows writing automated tests
for agent behaviors and interactions between agents.

3 The Methodology

3.1 A Process Model for Goal-Oriented Testing

The V-Model [16] is a representation of the system development process, which
extends the traditional water-fall model. The left branch of the V represents
the specification stream, and the right branch of the V represents the testing
stream where the systems are being tested (against the specifications defined on
the left-branch). One of the advantages of the V-model is that it describes not
only construction stream but also testing stream, i.e., unit test, integration test,
acceptance test, and the mutual relationships between them.

Tropos guides the software engineers in building a conceptual model, which is
incrementally refined and extended, from an early requirements model to system
design artifacts and then to code, according to the upper branch of the V (cor-
responding to the left branch of the original V) depicted in Fig. 2. We integrate
testing in Tropos by proposing the lower branch of the V (corresponding to the
right branch of the original V) and a systematic way to derive test cases from
Tropos modeling results, i.e. the upper branch of the V, in Fig. 2.

The modeling artifacts produced along the development process are: a domain
model (i.e. the organizational setting, as is), the Early Requirements model; a
model of the system-to-be where system requirements are modeled in terms of
system goal graph, Late Requirements model; a system architecture model, spec-
ified in terms of a set of interacting software agents, Architectural Design model;
a specification of software agent roles, capabilities, and interactions, Detailed
Design model; agent code Implementation artifact.

Two levels of testing are distinguished in the model. At the first level of the
model (external test – test executed after release), stakeholders (in collaboration



www.manaraa.com

62 D.C. Nguyen, A. Perini, and P. Tonella

Fig. 2. V-Model for GO testing

with the analysts), during requirement acquisition time produce the specification
of acceptance test suites. These test suites are one of the premises to judge
whether the system fulfills stakeholders’ goals.

At the second level (internal test – test executed before release), developers
refer to: goals that are assigned to the system-to-be, high-level architecture,
detailed design of interactions and capabilities of single agents, and implement
these agents. Based on the output of the Late Requirements and Architectural
Design phases, developers derive system test suites to test the system under
development at system level. Similarly, based on the output of the Architectural
Design and Detailed Design phases, developers derive agent test suites to test
agents individually as well as to test interactions among them. The derivation
of test suites is conducted in the same time as developers specify or design the
system, thus helping them refine their design and uncover defects early.

3.2 Testing Types and Goal Types

Currently, we focus on the internal level of the V (the right half of Fig. 2) and
consider three types of testing: Agent testing, Integration testing, and System
testing. The objectives and scope of each type is described as follows:

– Agent testing. The smallest unit of testing in agent-oriented programming
is an agent. Testing a single agent consists of testing its inner functionality
and the functionality it exposes to other agents with respect to the assigned
goals.

– Integration testing. An agent has been unit-tested, we have to test its in-
tegration with existing agents. In some circumstances, we have to test also
the integration of that agent with the agents that will be developed and
integrated subsequently. Integration testing involves making sure an agent
works properly with the agents that have been integrated before it and with
the “future” agents that are in the course of Agent testing or that are not



www.manaraa.com

A Goal-Oriented Software Testing Methodology 63

ready to be integrated. This often leads to developing mock agents or stubs
that simulate the behaviors of the “future” agents.

– System testing. Agents may operate correctly when they run alone but incor-
rectly when they are put together. System testing involves making sure all
agents in the system work together as intended. Specifically, one must test
the interactions among agents (protocol, incompatible content or convention,
etc.) and other concerns like security, deadlock.

Goals can be classified according to different perspectives or criteria. For in-
stance, goals can be classified into perform goals, achieve goals, and maintain
goals according to the agent’s attitude toward goals [8]. Other goal types are
also discussed elsewhere e.g. KAOS [7]. In this paper, since we are interested
in separating individual agent’s behavior from social behavior induced by goal
delegation in Tropos , we consider two types of goal: delegated goal and own goal.
The former goal type is delegated to one agent (dependee) by another agent
(depender). This goal type often leads to interactions between the two agents:
The depender demands (by sending requests to) the dependee to fulfill the goal.
The later goal type requires responsibility of its owner; however, the owner agent
does not necessarily run within its boundary, i.e. it can involve interactions with
other agents as well.

One can reason about assigned goals of the own type of a single agent to come
out with agent testing level. That is, based on these goals, developers could figure
out which plans or behaviors of the agent, i.e. functionality, to test. Since inte-
gration testing and system testing involve making sure the operation of agents
together in the system, the goals of type delegated and those goals of type own
that involve agents interactions are good starting points for these testing types.

3.3 Test Suites Derivation

Goals are states of affair, and one must do something in order to achieve his/her
goals. A very natural way of testing the achievement of a goal is to check one’s
work or behavior with respect to the goal. Similarly, in order to test a goal in
Tropos , we have to check what the system does or plans to do to fulfill the goal.

When applying the Tropos methodology, we can find out how goals can be
fulfilled by looking at their relationships with other goals and with plans. For
instance, if there is a Means-End relationship between goal G1 and plan P1,
we say G1 is fulfilled when P1 is executed successfully; if goal G2 contributes
positively to softgoal SG2 (Contribution+ relationship) then we can say SG2
is partially satisfied when G2 is fulfilled. Based on the relationships associated
with a goal, we can check the fulfillment of the goal.

Goal-goal or goal-plan relationships are classified into two categories: elemen-
tary relationships and intermediate relationships. Elementary relationships are
depicted in Fig. 3. This includes (1) Means-End between a plan and a hard goal;
(2) Contribution+ between a plan and a softgoal; (3) Contribution- between a
plan and a softgoal. In order to test this kind of relationships, the execution of the
plan corresponding to a goal is triggered and checked through assertions on the



www.manaraa.com

64 D.C. Nguyen, A. Perini, and P. Tonella

Hardgoal

Plan

Softgoal

Plan

+

Softgoal

-

Plan

(1) (2) (3)

Fig. 3. Elementary relationships. (1): a Means-End plan-hardgoal; (2): a Contribu-
tion+ plan-softgoal; (3): a Contribution- plan-softgoal.

Hardgoal

Goal 1 Goal N

OR decomposition

Hardgoal

Goal 1 Goal N

AND decomposition

S Goal

S Goal 1 S Goal N

S Goal

S Goal 1 S Goal N

S Goal

H Goal

+

S Goal

H Goal

-

OR decomposition AND decomposition

(4) (5)

(6) (7)

(8)

(9)

... ...

... ...

Fig. 4. Intermediate relationships

expected behavior. Developers derive test suites from goal diagrams by starting
from the relationships associated with each goal. Each relationship gives raise to
a corresponding test suite, consisting of a set of test cases that are used to check
goal fulfillment (called positive test cases) and unfulfillment (called negative test
cases). Positive test cases are aimed at verifying the fulfillment capability of an
agent with regard to a given goal; negative test cases, on the other hand, are
used to ensure an appropriate behavior of the system under test when it can not
achieve a given goal such as error management.

Intermediate relationships are shown in Fig. 4. Six intermediate relationships
are considered: (4) OR decomposition of a hardgoal into N sub-hardgoals; (5)
AND decomposition of a hardgoal into N sub-hardgoals; (6) OR decomposition of
a softgoal into N sub-softgoals; (7) AND decomposition of a softgoal into N sub-
softgoals; (8) Contribution- of a hardgoal to a softgoal; and (9) Contribution+
of a hardgoal to a softgoal. In order to test the fulfillment of the root goals that
are decomposed into subgoals or of those which receive contributions from other
goals, we have to test the fulfillment of their subgoals or of those that contribute



www.manaraa.com

A Goal-Oriented Software Testing Methodology 65

Search with preferencies

Search by address Search by number
of position

(a)

Search with preferencies

Search by address Search by number
of position

Search by address Search by number
of position

(b)

AND / OR
AND / OR

Fig. 5. An example of changing plan decomposition (a) to goal decomposition (b)
alternative way of representing that decomposition: the plan decomposition is changed
to a goal decomposition and two means-end relationships are added

Fig. 6. Test-suites derivation steps

to them. Specifically, to test the root goal of (5) or (7), we have to test the
fulfillment of N subgoals at the same time; to test the root goal of (4) or (6), we
have to test the fulfillment of each subgoals; to test the root goal of (8) or (9), we
have to test the corresponding hardgoals (contributing goals). The subgoals or
contributing goals become, in turn, root goals of further analysis. This process
continues until all considered relationships are of elementary kind. Therefore,
the testing of goals in intermediate relationships is approached eventually by
the testing of goals that are part of elementary relationships.

There could be additional types of relationships that differ from those pre-
sented above. For instance, a common practice is to decompose a plan into several
sub-plans. This could be avoidable by replacing the original plan by a goal that
is then decomposed into subgoals; the sub-plans are then means to achieve those
subgoals. An example is illustrated in Fig. 5.

To this end, test-suites derivation for testing goal fulfillment is realized by
investigating all relationships that lead to the goal. This ends up analyzing all
elementary relationships (ER), as described above. The derivation steps for ER
are shown in Fig 6. At the first step: Goal-plan relationships analysis, the tester
has to identify all ER in the goal diagrams, i.e., Tropos architectural and detailed



www.manaraa.com

66 D.C. Nguyen, A. Perini, and P. Tonella

design diagrams (results of the architectural and detailed design phase, see our V
process model in Subsection 3.1). Then, he/she iteratively takes an ER, creates
a test suites skeleton for that ER, and completes the test suites by filling in
test data, including input data, test oracle, pre/post-condition etc. Test suite
structure is described in Subsection 3.4.

3.4 Test Suites Structure

The structure of the test suites is partially summarized, using a BNF-style nota-
tion, in Fig. 7. A test suite contains three parts: <General>, <Functional>, and
one or more <TestCase>. <General> contains descriptive information such as
ID, name, created by, version, date of creation, and textual, free-format descrip-
tion. <Functional> contains functional information about the agent under test,
the goal-plan couple being tested, pre-/post-conditions, test suite setup and tear-
downactivities.<TestCase>, in turn, apart from general information and test case
setup/teardown activities, contains the core element of a test suite: <Scenario>.

A test scenario consists of an ordered set of sequences, which is in turn a
communication act (<Initiator>, <Responder>, <Message>), a branching or
sequencing condition (<NextSequence>, <NextIfTrue>, <NextIfFalse>), or a
check point (test oracle) to validate output data (<Condition>). <Scenario>
is also used to specify the interaction protocol, in which check points can be
added for testing purposes. The comparison operators <CompareOpt> between
message <Message> and <ConditionData> include eq: equal, ne: not equal,
ge: greater or equal, etc., contains: message content contains condition data,
not − null: message content is not null.

As an example of test scenario, let’s assume that we have an agent acting as
a tester agent, called TA, and an agent under test, named BibFinder. TA can

Fig. 7. Test suite structure



www.manaraa.com

A Goal-Oriented Software Testing Methodology 67

test the search function of BibFinder by a test scenario having two sequences
as follows: Seq1

.= (Initiator = TA, Responder = BibFinder, Message = “search
keywords: aamas”, SequenceType = initial, NextSequence = Seq2); Seq2

.= (Ini-
tiator = BibFinder, Responder = TS, SequenceType = checkpoint, Condition
.= (CompareOpt = not-null)). The scenario says that TS sends a request to
BibFinder asking it to search for “aamas”, and then TS checks the response
from BibFinder to see if the result is not null.

The proposed structure of test suite, test case, and test scenario are designed
such that they can be used at different formality levels and with different pro-
gramming languages. Informally, developers can specify their test cases using
descriptive text. This format can be used by human testers to manually provide
input data to the system and evaluate the output results. When used formally,
the specified test cases can be read by a testing tool to test the system auto-
matically. To obtain these purposes, the elements Pre-condition, Post-condition,
Setup, Teardown, Message, and ConditionData are designed to contain any user-
defined data type; developers can associate their data with their own parser and
grammar. An example in Section 4 will illustrate how the structure is used for-
mally to specify a test case of a communication act and Pre-condition.

3.5 Agent Testing Tool

In order to facilitate test-suites derivation and execution, we propose an agent
testing tool, called eCAT1 that consists of three main components: Test Suite
Editor, that semi-automatically generates test suites skeleton and allows human
testers to specify test data from goal analysis diagrams produced by TAOM4E2, a
tool that supports Tropos ; Autonomous Tester Agent, a special JADE [18] agent
that is capable of executing test suites against a MAS; and Monitoring Agent,
that monitors communications and events among agents to help debugging.

Testing execution is realized by the Autonomous Tester Agent, following test
specification in the test suites. Depending on the <SequenceType> of each se-
quence of the specified scenario, the Autonomous Tester Agent either reads the
defined message and sends it to the agent under test (Responder), or waits for
a response from the agent under test to evaluate the test result with respect to
the specified <Condition>. The later happens when <SequenceType> equals to
checkpoint.

4 An Example

In scientific research and writing, bibliography search is a time-consuming activ-
ity. BibFinder is a MAS for the retrieval of bibliographic information in BibTeX
format3. BibFinder is capable of scanning the local drivers of the host machine,

1 More information about the tool: http://dit.unitn.it/∼dnguyen/ecat
2 http://sra.itc.it/tools/taom4e
3 http://www.ecst.csuchico.edu/∼jacobsd/bib/formats/bibtex.html

http://dit.unitn.it/~dnguyen/ecat
http://sra.itc.it/tools/taom4e
http://www.ecst.csuchico.edu/~jacobsd/bib/formats/bibtex.html


www.manaraa.com

68 D.C. Nguyen, A. Perini, and P. Tonella

BibFinder

Manage local bib

Update
Delete

Update new items
Delete items

Interface

For results

For requests

Return bibs

Receive requests

BibFinder
Agent

BibExchanger
Agent

Exchange BibTeX
with other BibFinders

Serve requests
from other BibFinders

Ask other
BibFinders

Receive BibTeX
from other BibFinders

Search in 
local bib

Receive bib

Search in local bib database

Serve requests

Ask other BibFinders

Search in 
local bib

BibExtractor
Agent

Auto-Extract BibTeX

Auto-Extract BibTeX

From the Internet From existing files

Search URL via Google Scan local drivers for BibTeX file
and insert into local bib database

Fig. 8. Architecture of BibFinder. BibFinder contains three “physical” agents:
BibFinderAgent, BibExchangerAgent, and BibExtractorAgent.

where it runs, to search for bibliographic data in the format of BibTeX. It consoli-
dates databases spread over multiple devices into a unique one, where the queried
item can be quickly searched. BibFinder can also exchange bibliographic infor-
mation with other agents, in a peer-to-peer manner, thus augmenting its search
capability with those provided by other peer agents. Moreover, BibFinder per-
forms searches on and extracts BibTeX data from the Scientific Literature Digital
Library4, exploiting the Google search Web service5.

Let’s revisit Fig. 1 that shows the late requirements analysis of BibFinder.
Basically, the actor Researcher depends on the BibFinder system by the hard
goal Find Bib and the softgoal Fast and efficient. Inside BibFinder, the former
goal is decomposed into subgoals Interface to external systems, Manage local
bib database, Auto-extract bibtex either From existing files or From the Internet,
and Exchange bibtex with other BibFinders. The three goals Manage local bib,

4 http://citeseer.ist.psu.edu
5 http://code.google.com/apis/soapsearch

http://citeseer.ist.psu.edu
http://code.google.com/apis/soapsearch


www.manaraa.com

A Goal-Oriented Software Testing Methodology 69

Auto-extract bibtex, and Exchange bibtex with other BibFinders contribute pos-
itively to the softgoal Fast and efficient.

Fig. 8 shows the architecture of BibFinder. BibFinder is composed of three
agents, namely: BibFinderAgent, BibExtractorAgent, and BibExchangerAgent.
The goals identified in the late requirements analysis phase are assigned to these
agents. For instance, Manage local bib and Interface are assigned to the BibFind-
erAgent agent while Exchange bibtex with other BibFinders is the BibExchanger-
Agent ’s task.The BibExtractorAgent agent is in charge of the goal Auto-extract
bibtex ; and the BibFinderAgent depends on the BibExtractorAgent agent for
that goal in order to serve requests from external systems.

4.1 Test Suites Derivation for BibFinder

Testing BibFinder consists of testing its three agents (BibFinderAgent, BibEx-
tractorAgent, BibExchangerAgent) and the interactions among them (presented
as goal dependencies). Inside each agent, we analyze the top root goal to find
out all elementary relationships. A test suite will be derived for each elementary
relationship by following the steps described in Fig. 6. For instance, test suite
TS1: Search-Bib is derived from the Means-End relationship between the goal
Search in local bib and the plan Search in local bib database. The goal is delegated
by the BibFinderAgent agent to the BibExchangerAgent agent, so two sample
test cases are defined to check if the latter agent is able to search for an existing
BibTeX item and if it behaves properly in case of badly formatted request; and
two test cases address the former agent’s ability to delegate the request.

Fig. 9 in depicts the test suite TS1 in XML format. Apart from general and
functional elements, the test suite contains four test cases. The test scenario of
the first test case has two sequences. The first one consists of sending a request to
the BibFinderAgent. The request asks the BibFinderAgent to find BibTeX related
to the keywords Tropos Methodology (request content is shown in Fig. 10, placed
on the Fig. 9). The second sequence specifies a checkpoint where the tester agent
waits for a result and then verifies if it contains “John Mylopoulos”.

As an example of using pre-condition, Fig. 11 (placed on Fig. 9) illustrates a
graphical presentation of the BibFinderAgent and shows the <PreCondition> of
TS1 in OCL [17]. Basically, the BibFinderAgent has two references to the BibEx-
tractorAgent and BibExchangerAgent, and they must not be null whenever the
BibFinderAgent processes a request by the method action(). The pre-condition
of TS1 is specified to guarantee this constraint. Then, it can be transformed to
executable code, e.g. Java, and used in the course of testing the BibFinderAgent.

4.2 Testing BibFinder Against the Derived Test Suites

BibFinder has been implemented under JADE [18] and tested by the agent
testing tool introduced in Subsection 3.5. For experimenting, we derived three
test suites from three Means-End relationships in the architectural design of
BibFinder: TS1: Search-Bib, described in Subsection 4.1; TS2: Search-URL-via-
Google; TS3: Update-Bib. The tool took these test suites and executed them
against the BibFinder.



www.manaraa.com

70 D.C. Nguyen, A. Perini, and P. Tonella

<?xml version="1.0" encoding="UTF-8" ?>
- <TestSuite xmlns="http://sra.itc.it/se/TestSuite" xmlns:tc="http://sra.itc.it/se/TestCase"

xmlns:acl="http://www.fipa.org/ACLSchema" xmlns:tsc="http://sra.itc.it/se/TestScenario"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://sra.itc.it/se/TestSuite ..\xsd\TestSuite.xsd">

+ <General>
- <Functional>

<AgentInCharge>BibFinderAgent</AgentInCharge>
- <GoalPlan>

<Goal>Search in local bib</Goal>
<Plan>Search in local bib Database</Plan>
<Relationship>Means-End</Relationship>

</GoalPlan>
</Functional>

- <tc:TestCase>
<tc:ID>TS1-TC1</tc:ID>
<tc:Name>Search Bib</tc:Name>
<tc:Type>possitive</tc:Type>
<tc:Description>Search bibtex items for a given title</tc:Description>

- <tc:Scenario>
- <tsc:Sequence>

<tsc:ID>TC1001</tsc:ID>
<tsc:Initiator>TesterAgent</tsc:Initiator>
<tsc:Responder>BibFinderAgent</tsc:Responder>
<tsc:SequenceType>initial</tsc:SequenceType>
<tsc:NextSequence>TC1002</tsc:NextSequence>

- <tsc:Message>
+ <acl:fipa-message act="REQUEST" conversation-id="C12">
</tsc:Message>
<tsc:Timeout>5000</tsc:Timeout>

</tsc:Sequence>
- <tsc:Sequence>

<tsc:ID>TC1002</tsc:ID>
<tsc:Initiator>BibFinderAgent</tsc:Initiator>
<tsc:Responder>TesterAgent</tsc:Responder>
<tsc:SequenceType>checkpoint</tsc:SequenceType>

- <tsc:Message>
- <acl:fipa-message act="INFORM">
+ <acl:msg-param>
</acl:fipa-message>

</tsc:Message>
- <tsc:Condition>

<tsc:compareOpt>contains</tsc:compareOpt>
- <tsc:ConditionData>
- <acl:fipa-message act="INFORM">
- <acl:msg-param>

<acl:content>John Mylopoulos</acl:content>
</acl:msg-param>

</acl:fipa-message>
</tsc:ConditionData>

</tsc:Condition>
<tsc:Timeout>5000</tsc:Timeout>

</tsc:Sequence>
</tc:Scenario>
<tc:Active>true</tc:Active>
<tc:Priority>0.9</tc:Priority>

</tc:TestCase>
+ <tc:TestCase>
+ <tc:TestCase>
+ <tc:TestCase>
</TestSuite>

Fig. 9. TS1 - Search Bib test suite

Fig. 10. Content of the
request C12

Fig. 11. Pre-condition ex-
pression of TS1

These test suites have revealed four moderate severity errors, related to the
BibExtractor agent, which, in some cases, does not reply to an admissible request,
replies to the wrong address or wrong performative. The last defect is related
to the BibFinder agent, that is it raises a fatal error while updating a wrong
BibTeX item.

5 Conclusion and Future Work

This paper introduced a GO testing methodology that takes design artifacts,
specified as Tropos goal models, as central elements to derive test cases. The



www.manaraa.com

A Goal-Oriented Software Testing Methodology 71

methodology provides a systematic guidance to generate test suites along the
Tropos development process. These test suites, on the one hand, are used to
refine goal analysis and detect problems early at the requirement phase. On
the other hand, they are executed afterward to test the achievement of the
goals from which they were derived. Our preliminary application of the proposed
methodology in testing BibFinder, which has been introduced in Section 4, are
promising in detecting errors.

Different goal types, testing types, and the connection between them were
discussed. In addition, the test suite structure was also discussed. The detailed
structures of test suite, test case, and test scenario in XML format are introduced
separately in a technical report [13].

In the paper, the proposed methodology has focused mainly on the goal con-
cept, leaving out other dependencies among actors like resource dependency, plan
dependency. The methodology will be extended to cover those types of depen-
dency as well. In addition, the internal structure of a plan has not been fully
exploited. Detailed information concerning operations and interactions could fa-
cilitate detailed test generation. In the future work, we will investigate plan
modeling as well in order to extract this information.

In particular, we are investigating MAS testing with respect to the properties
of MAS such as autonomous and adaptive. A technique, called continuous test-
ing, is being implemented. It takes test suites derived by following the proposed
methodology, evolves and runs them continuously against a MAS in order to
find defects.

References

1. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2002)

2. Benerecetti, M., Giunchiglia, F., Serafini, L.: Model checking multiagent systems.
Journal of Logic and Computation 8(3), 401–423 (1998)

3. Bordini, R., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems 12, 239–
256 (2006)

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (2004)

5. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent
systems using mock agents and aspects. In: SELMAS 2006: Proceedings of the
2006 international workshop on Software engineering for large-scale multi-agent
systems, pp. 83–90. ACM Press, New York (2006)

6. Cossentino, M.: From requirements to code with the passi methodology. In:
Henderson-Sellers, Giorgini [12]

7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20(1-2), 3–50 (1993)

8. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Goal types in agent program-
ming. In: ECAI, pp. 220–224 (2006)



www.manaraa.com

72 D.C. Nguyen, A. Perini, and P. Tonella

9. Dikenelli, O., Erdur, R.C., Gumus, O.: Seagent: a platform for developing seman-
tic web based multi agent systems. In: AAMAS 2005: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems, pp.
1271–1272. ACM Press, New York (2005)

10. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specify-
ing and analyzing early requirements in tropos. Requir. Eng. 9(2), 132–150 (2004)

11. Graham, D.R.: Requirements and testing: Seven missing-link myths. IEEE Soft-
ware 19(5), 15–17 (2002)

12. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea
Group Inc. (2005)

13. Nguyen, D.C., Perini, A., Tonella, P.: A goal-oriented software testing methodology.
Technical report, ITC-irst (2006),
http://sra.itc.it/images/sepapers/gost-techreport.pdf

14. Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The ingenias methodology and tools. In:
Henderson-Sellers, Giorgini [12]

15. Poutakidis, D., Padgham, L., Winikoff, M.: An exploration of bugs and debugging
in multi-agent systems. In: AAMAS 2003: Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, pp. 1100–1101.
ACM Press, New York (2003)

16. The Development Standards for IT Systems of the Federal Republic of Germany.
The V-Model (2005), http://www.v-modell-xt.de

17. The Object Management Group. Uml ocl2 specification (2005),
http://www.omg.org

18. TILAB. Java agent development framework, http://jade.tilab.com/
19. Tiryaki, A.M., Oztuna, S., Dikenelli, O., Erdur, R.: Sunit: A unit testing framework

for test driven development of multi-agent systems. In: Padgham, L., Zambonelli,
F. (eds.) AOSE 2006. LNCS, vol. 4405, Springer, Heidelberg (2007)

20. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Department of Computer Science, University of Toronto
(1995)

http://sra.itc.it/images/sepapers/gost-techreport.pdf
http://www.v-modell-xt.de
http://www.omg.org
http://jade.tilab.com/


www.manaraa.com

Open Agent Systems ???

Frank Dignum1, Virginia Dignum1, John Thangarajah2,
Lin Padgham2, and Michael Winikoff2

1 Dept. Information and Computing Sciences, Utrecht University
The Netherlands

{dignum,virginia}@cs.uu.nl
2 RMIT University

Melbourne, Australia
{johthan,linpa,winikoff}@cs.rmit.edu.au

Abstract. E-institutions are envisioned as facilities on the Internet for heteroge-
neous software agents to perform their interactions and thus forming truly open
agent systems. We investigate how these heterogeneous agents can determine
whether an institution is one in which they can participate. We propose a layered
approach which is supported through a (traditional) middle agent that is part of
the environment. Starting with a basic compatibility of message types, each extra
layer ensures a higher degree of compatibility, but requires also extra sophistica-
tion in both the information required and the matching algorithms. In this paper,
we describe reasoning about how an agent should take on a specific role, message
matching, and protocol compatibility. We explore the issues in the context of an
actual accommodation agent built in JACK, and a travel agency institution built
in ISLANDER.

1 Introduction

The notion of “open agent systems” is a popular and appealing one. However, there
are many question marks associated with making such a vision a reality! Increasingly,
the Internet is being viewed as an open interaction space where many heterogeneous
agents co-exist. As in human societies, electronic interaction spaces must deal with
issues inherent to open environments, namely heterogeneity of agents; trust and ac-
countability; exception handling (detection, prevention and recovery from failures that
may jeopardise the global operation of the system); and societal change (capability of
accommodating structural changes). Electronic Institutions have been proposed as a
way to implement interaction conventions for agents to regulate their interactions and
establish commitments in an open environment [1]. In theory, such open environments
have open admission policies, and therefore potentially fluid membership, and in such
an environment, any agent could join a given institution. However, it is not clear how
an agent should determine whether a particular institution is one that makes sense for it
to join. Is the institution one in which it will be able to successfully achieve its goals?
Can it successfully exchange the expected messages for a given role in the institution?
Currently, in practice, agents are designed so as to be able to operate exclusively with a
single given institution, thus basically defying the open nature of the institution.

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 73–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

74 F. Dignum et al.

We consider the situation in which many different institutions and agents coexist,
and where the institutions and the agents pursue their own goals, but are dependent on
each other to realize them. We take as an example the domain of travel, where insti-
tutions represent travel agencies and agents can be seen as representing individuals (or
enterprises) seeking or offering certain services (trips, hotels, air tickets, ...). Institutions
are developed by (possibly competing) entities with the view to offering an interaction
space around a certain topic (flights, tourism in Victoria, eco-tourism, etc.) enforcing
certain regulations on the interaction. The institutions may be more or less regulated
allowing for more or less autonomy and openness to agents. An agent may want to join
different institutions in order to fulfill its goals (e.g. either to compare prices, to get
the most clients, or to create a total package from the different possibilities offered by
different institutions).

We further assume that institutions and agents are developed independently from
each other, hence structures are needed to support and guide the search and joining
process. The greater the level of standardization, the simpler it will be to provide such
support. The aim of this work is to give guidance on what information needs to be
provided by agents and by institutions, in order to reason about compatibility. We aim
to move away from the current situation where agents are hand-crafted to participate
in a particular institutional space. Our aim is to move towards agents being able to
determine at run time whether they can sensibly participate in a given institution. It
may be clear that a “correct” decision about participation is very complex and involves
reasoning about the semantics of what the agent and the institution try to achieve and
their compatibility. In this paper we will not attempt to give a complete solution for
this problem in one step, but rather sketch a way in which the solution to this decision
problem can be approximated. This is done by involving more aspects of the problem
in different stages and also adding more semantic matchmaking aspects to a basis of
more syntactic matchmaking solutions.

While standards facilitate this kind of reasoning and support (and are indeed a kind
of baseline for our approach), our aim is to keep the requirements on agents and insti-
tutions as minimal (and realistic) as possible. Where possible, we attempt to use exist-
ing (W3C) standards, or information that could be expected to fairly readily be made
available. Although few real standards have been developed specifically for agents (see
FIPA1 for the state of the art), we can make use of standards such as WSDL2 for mes-
sage formats and OWL-S3 descriptions for message contents, as well as other W3C
standardized information such as WS-CDL4 for protocol descriptions. In the case of
institutions there are far fewer examples, and de-facto or decreed standards have not
yet developed. ISLANDER is one of the few implemented tools for the specification
and management of institutions [2]. It provides a combination of graphical and textual
representations of the institution whilst the complete specification can also be obtained
as an XML document. Currently it requires that agents are developed specifically to
fit within a particular ISLANDER specified institution. However, we use it to explore

1 http://www.fipa.org/
2 http://www.w3.org/TR/wsdl
3 http://www.w3.org/Submission/OWL-S
4 http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

http://www.fipa.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/OWL-S
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/


www.manaraa.com

Open Agent Systems ??? 75

the general issues involved in attempting to incorporate arbitrary agents within such an
institution.

In the sections ahead we provide a concrete example of a simple ISLANDER insti-
tution representing a travel agency, and an accommodation agent previously developed
for a different project. We explore how it might be determined whether the accommo-
dation agent can participate in the Travel Institution. We provide an architecture that
minimizes the requirements on both agents and institutions by introducing a third party
service to reason about compatibility. We also identify the kind of information that
agents and institutions will need to make available in order for this to work.

2 Application Scenario

In order to test the issues raised in the previous section, we use the domain of travel
organizations as an application scenario. The motivations for this choice are twofold.
On the one hand, it is a familiar domain, which does not require a lot of background
description. Travel applications are widely available on the internet, and the idea of
developing agents that can interact seamlessly with several existing applications is a
realistic and useful one. On the other hand, we make use of an accommodation agent
that was developed as part of a project to provide a testbed of travel and tourism agents,
which is implemented using JACK5. This agent, which we will refer to as JACK-acc-
agent in the remainder of this paper, when queried, returns a list of accommodation
options. The service description is available in both WSDL and OWL-S and the ontol-
ogy is defined in OWL-S. The fact that this agent has been developed independently
of this project further serves our purpose of analyzing the complexity of interactions in
heterogeneous environments.

Since most travel applications existing online are not based on MAS frameworks,
we have developed a test institution using the ISLANDER platform 6. ISLANDER is a
graphical tool for the specification and verification of electronic institutions. The core
notions of an ISLANDER electronic institution specification are [1]:

Agents and Roles. Agents are the players in the institution, whereas roles are defined
as standardized patterns of behavior. Agents within an electronic institution are
required to adopt some role(s).

Dialogic framework. Provides the context for interaction, in terms of domain concepts
(ontology) and communication language (illocutions).

Scene. Interactions between agents are articulated through agent group meetings,
called scenes, with a well-defined communication protocol.

Performative structure. Scenes can be connected, composing a network of scenes that
captures the existing (ordering) relations among scenes. Further, it describes how
roles can legally move from scene to scene.

Normative Rules. Agent actions may have consequences that either limit or enlarge
its subsequent acting possibilities. Such consequences will impose obligations to
the agents and affect its possible paths within the performative structure.

5 JACK is an agent development platform available from Agent Oriented Software,
http://www.agent-software.com.au

6 http://e-institutor.iiia.csic.es/software.html

http://www.agent-software.com.au


www.manaraa.com

76 F. Dignum et al.

Fig. 1. Partial view of the travel agency in ISLANDER

The travel agency institution facilitates the search, reservation, and purchase of
flights and accommodation for potential customers. Some of the possible roles within
this institution are customer, flight-service, hotel-service and payee (e.g. bank). Agents
that enter this institution will take up one or more of these roles. Roles in ISLANDER
can be either internal, played by agents within the organization, or external, which can
be in principle played by any agent. Our focus in this paper is on these external roles.

The interactions between roles are captured within Scenes. For example the hotel-
search-scene captures the interaction protocol between a customer and a hotel-service.
In this scene the customer requests accommodation options from the hotel-service, who
in return supplies a list of hotel options. The protocol is defined as a finite state machine.
The other scenes of our travel institute include: a flight-search-scene, a reservation-
scene and a payment-scene.

The relationships between scenes and the roles that enter and leave particular scenes
are captured by the Performative Structure in ISLANDER (Figure 1). For example, a
customer and a hotel-service may enter the hotel-search-scene and leave this scene with
two options: exit the institution or move to the reservation-scene. The performative
structure therefore constrains roles to particular scenes and also provides a view of the
path an agent or service that enters an institution may take during its stay. As an agent
moves between scenes it may well change its role. This is also specified as part of the
Performative Structure. For example an agent playing the flight-service role in the flight
search scene, may play a payee role in the payment scene. The performative structure
specifies the permitted role changes as the agents move between scenes.

The Ontology defined in ISLANDER specifies the terms that can be used in the
message patterns that can be used by the agents playing roles in a particular scene. The
ontology is also used when defining constraints and norms.

As we envisage our travel institution to be an open system, then the accommodation
agent JACK-acc-agent should be able to determine that it could join this travel institu-
tion taking up the role of a hotel-service, and participating in the hotel-search scene (as
long as all conditions were met). Such a process requires two types of abilities. On the
one hand, the technical ability of finding and using the API to connect to the institution
application, and on the other hand the cognitive ability of determining the applicability



www.manaraa.com

Open Agent Systems ??? 77

of some institutional role to the realization of its goals. Some of the questions that such
an agent will need to answer, in order to recognize this opportunity, are:

– What roles will the agent be able to take on in the organization? How does it move
between roles and scenes?

– Can the accommodation agent send and receive the right message types for the
organization? Will it be able to understand the content of the messages sent by the
customer role and vice versa?

– Will it be able to follow the appropriate interaction protocols to conduct its business
within the organization?

In the following section we describe an overall architecture to support the kind of
open system described in this example. The details in further sections will address the
above issues.

3 System Architecture

In order to achieve our aim of having minimum requirements imposed on the agents
and on the institutions, we propose an architecture where most of the reasoning about
whether a particular agent is equipped to successfully participate in a particular institu-
tion, is located in an infrastructure support service, which we conceptualize as a middle
agent. The term middle-agent has been used to describe various services such as yellow
page agents [3], directory facilitators7, brokers, and match-makers [4]. The LARKS
system [5] provides a match making between agents based on service descriptions. Al-
though this comes closer to what we propose than something like UDDI (Universal
Description, Discovery and Integration) directories8 it can better be seen as a potential
part of our Middle Agent than as an alternative. In our situation we do not only match
services, but also protocols and combination of services. To our knowledge, no solu-
tion for this type of matchmaking has been proposed yet. We will call this entity an
Institutions Middle Agent (IMA).

Similarly to the matchmaker middle agent, the IMA will maintain listings, and pro-
vide information regarding compatibility of institutions/agents with requests. Agents
and institutions will register with the IMA, providing some information about their
structure (such as WSDL descriptions, and other identified information). The IMA will
then do the required reasoning to answer the questions identified in our example. An
overview of the architecture is given in Figure 2.

It is important to note here that this figure represents the simplest IMA architecture,
consisting of only one middle agent. In practice, more than one IMA may be necessary
(e.g. to avoid bottlenecks) which will be interconnected. From the perspective of the
agents and institutions using the IMA layer, this difference should be irrelevant. That
is, whether one or more IMAs are present in the mediation layer, its basic overall func-
tionality is as depicted in figure 2. The interaction of multiple IMAs is the subject of
future research.

7 http://www.fipa.org/specs/fipa00023/SC00023K.html
8 http://www.uddi.org

http://www.fipa.org/specs/fipa00023/SC00023K.html
http://www.uddi.org


www.manaraa.com

78 F. Dignum et al.

Agent1

AgentM

‘Middle’ agent

Organization1

…
…

Org. registry Agt. registry

• role assignment

• message matching

• protocol matching

• goal matching

Exchange simulation

OrganizationN

registration

Fig. 2. Institutions Middle Agent (IMA) Architecture

The functionalities of the IMA are divided over a number of levels of complexity.
The lower levels require fewer assumptions of the required input and are meant to be
used in situations where only simple standards exist and agents and institutions have
little reflexive capabilities (i.e. cannot provide much information about the way they
function). At the highest level more input is needed and the reasoning involves some
very hard and complex issues, but also more guarantees can be given about the actual
match between an agent and an institution.

Assign agents to roles within an institution. In order to do this the institution must
register with the IMA some list of roles, and the messages and protocols associated
with each role. On this most basic level the IMA checks whether the agent can play a
role in the institution based on role names. This is explored further in section 4.

Check for message compatibility. On the next level of compatibility, the IMA will re-
quire some knowledge of the messages understood and expected by both the agent and
the institution. Besides checking for message format compatibility, this also includes
a kind of ontology matching on the content of the messages (which might in turn be
outsourced to specialized ontology matchers). This is explored further in section 5.

Check for protocol compatibility. Even if the messages are compatible, if the expected
pattern of message exchange is not compatible then successful interaction cannot be
guaranteed. This is further discussed in section 6.

Perform goal related reasoning. On top of these basic compatibility issues the IMA
can further check whether the goals of the agent and the institution are compatible.
Is one institution better for the agent to achieve its goals than another? This level of
reasoning could be supported if agents and institutions carried a protocol representation
that included interaction goals. A possible way to achieve this is suggested by Cheong
and Winikoff [6], but (due to space restrictions) will not be discussed further in this
paper.

Simulate a run of interactions. The highest level of compatibility can be ensured through
a simulated run of interactions. This allows to check not only whether the protocols are
compatible but also whether they bring about the desired outcome. Space limitations do
not allow us to elaborate on this issue.



www.manaraa.com

Open Agent Systems ??? 79

4 Agents and Roles

The concept of role plays a central role in organizational theory, describing patterns
of conduct, that is, expectations, identities, and social positions. Agents can play roles,
which potentially give them authority over other agents playing other roles. Empower-
ment and authority are recognized as critical aspects, since these identify which roles
(and hence which agents) are enabled to perform which actions. From the perspective
of system design, roles have the advantage that they abstract from the specific design
and internal specification of individual agents. Roles in an institution identify the activ-
ities and services necessary to achieve social objectives and enable to abstract from the
specific individuals that will eventually perform them [7]. From the perspective of insti-
tution design, roles are the building blocks for the agent architecture, providing place-
holders for the actual agents. The concept is concerned with the specification of patterns
of conduct, that is, expectations, identities, and social positions; and with context and
social structure. From the agent design perspective, roles specify the expectations of the
society with respect to the agent’s activity in the society. I.e. a role can be seen as a ‘job
description’ whose conditions the agent wants to negotiate to better match its interests.
Roles also define normative behavioral repertoires for agents [8]. In the current practice
of MAS design, roles take different functions in different approaches to open agent sys-
tems. Some define roles as a class that defines a normative behavioral repertoire of an
agent, others see roles as the representation of the ‘expectations’ of the institution for
that position, while others take a more (linguistic) interaction perspective and use roles
to represent the different participants in a conversation or protocol.

One of the first problems one encounters when considering the take up of institutional
roles by external agents is that tools currently used to implement agents do not contain
the concept of a role to represent the position (i.e. place holder) of the agent in the
institution. Although agents might be designed to fill a role in the system, they are not
aware of these roles at run-time! As such, messages used by agents in these systems
always require specific agent IDs as the sender or recipient of the message and cannot
be addressed to any agent fulfilling a role. Considering the fulfilment of those roles
in an institution that is open for external agents (e.g. the role of seller), the primary
functionality for the IMA is thus to enable agents to take up a role in an institution9.
There are two activities necessary to achieve this aim: (1) Check compatibility between
agent and role, and (2), Provide operational support for agent activity as role enactor
within the institution.

At the most basic level, a compatibility check can be done by comparing the semantic
meaning of the agent’s identifier with that of the role identifier. Such a check is obvi-
ously not enough but it gives an initial idea of possible compatibility. E.g. a buyer agent
may probably not be able to perform a hotel-service role. Of course, some ontological
knowledge is required for this function. At this stage we assume this service to be pro-
vided by an ontology mapping service. Another possibility checks which roles an agent
may be able to play by looking at the messages that the agent can send and receive, and

9 Here we assume that the way an institution describes a role indicates possible pre-conditions
or requirements on the agents that can take up that role. This can become quite complex,
involving a negotiation process between the institution and the potential candidate agents [9].



www.manaraa.com

80 F. Dignum et al.

comparing them against the message interface of the roles. We will elaborate further on
this in section 5.

In the specific case of ISLANDER, roles describe a specific position in one dialogic
scene. That is, in ISLANDER an agent probably has to take up several roles as it moves
into different scenes in the performative structure of an institution (e.g. the agent playing
the role of customer in the hotel-search-scene, may later have to play the role of payer in
the payment scene). From the agent’s perspective it would make more sense to think of
all these roles together as the customer role. This extends the desired functionality of the
IMA to create one institutional role to be taken up by one agent to move from entrance
to exit of the institution. For ISLANDER this role is composed of the union of scene
roles that form a coherent path through the dialogical framework of the institution.

After the IMA has determined that an agent is compatible with a role in an institu-
tion, the next step is to help the agent enter into that institution. In ISLANDER exe-
cution of electronic institutions is regulated by AMELI [2]. AMELI provides governor
agents which mediate all interaction with external agents, and thus are able to enforce
compliance with the institution’s protocols and performative structure. However, other
proposals for institution modeling relax this constraint by defining participation negoti-
ation protocols, in which an agent can negotiate its institutional activity10 to best fit its
capabilities [9]. The range of negotiation is defined by the institution so as to limit it to
parameters and values that do not endanger institutional norms and objectives.

In this paper, we will limit ourselves to determining the necessary preconditions for
an agent to take up a role (in terms of messages and protocol fulfillment). However
this still does not say anything about the sufficient preconditions for role enactment.
That is, why should the agent take up this role, how does an agent choose which role
to perform, or is this the optimal role (and the optimal institution) for the aims of the
agent? E.g. should an agent take up a role of accommodation-service or of trip-service?
The definition of sufficient preconditions for role enactment must therefore include the
matching of the goals of the agent to those of the role. Given that we cannot assume any
level of introspection from the agents, and in fact most existing agent platforms do not
enable introspection, it is clear that this is a field that requires much more study.

5 Message Compatibility

In the following, we assume that both agents and institutions are able to provide a
WSDL description of their message types. It must be noted, that this is not something
that can be generally expected of all current agent platforms. A possible way to solve
this, is to develop dedicated services that are able to transform a specific message type
representation into a standard such as WSDL. Such services can be used by the IMA to
convert message specifications.

Considering our example, messages used by the accommodation agent JACK-acc-
agent are specified as follows:11 (a # before a field name indicates that the field is
optional)

10 That is, activity by the agent that is done in order to fill a role in the context of an institution.
11 The actual WSDL is too lengthy. This provides the relevant conceptual information, with mod-

ified syntax.



www.manaraa.com

Open Agent Systems ??? 81

<complex type AccomodationInfo: ”accommodationContactInfo” type=string;
”#Name” type=string; “#facilities” type=string; “#maxPrice” type=cost; “#minPrice” type=cost;
“#region” type=string; “#paymentMethods” type=string; ”address” type=string;/>

<message input: “#Name” type=string; “#facilities” type=string; “#maxPrice” type=cost;
“#minPrice” type=cost; ”region” type=string />

<message output: ”AccommodationResult” type=ListOfAccomodationInfo />

The following description of messages is extracted from the ISLANDER specifica-
tion of the hotel-search scene:

<complex type AccomodationInfo: ”accommodationContactInfo” type=string;
“#Name” type=string; ”address” type=string; “#region” type=string; “#maxPrice” type=cost;
“#minPrice” type=cost; “#paymentMethods” type=string;/>

<message from role: customer to role: hotel-service “#Name” type=string; ”region” type=string;
”maxPrice” type=cost; ”minPrice” type=cost;/>

<message from role: hotel-service to role: customer ”AccommodationResult” type=ListOfAccomodationInfo />

Given a WSDL style specification, such as that above, one of the functionalities of the
IMA is the determination of message-level compatibility between the accommodation
agent JACK-acc-agent and the institutional role of hotel-service. In open systems, exact
matches are highly unlikely. In fact, the level of similarity in the example above, even
though it is not an exact match, is much higher than what is likely to be found between
compatible message sets in an open system. In our example, the lack of exact matching
has to do with optional and mandatory fields, and with ordering of fields. Another im-
portant lack of matching is at the level of sender and receiver fields: while ISLANDER
uses role names, the agent does not specify any receiver. As discussed in section 4, the
IMA must keep track of the agent’s role and the roles of the agents it interacts with, and
possibly add this information to the messages being passed within the institution.

In order to realize that the accommodation agent JACK-acc-agent is compatible with
the role of hotel-service, the IMA needs to determine (a) that all messages sent to the
hotel-service role can be transformed into messages compatible with available input
messages of the Accommodation Agent, and (b) that all output messages of the Ac-
commodation Agent can be transformed into messages compatible with the messages
that the hotel-service role can send.

Determining compatibility of one message specification with another requires ascer-
taining whether the sent message can be type-cast into what is expected by the receiver.
In order to ensure that all instances of sent messages will be able to be transformed into
something that is acceptable to the receiver we require that every mandatory field in the
received message be compatible with a mandatory field in the sent message. Optional
fields can be matched in the same way as mandatory ones, but if no match is found they
can be ignored.

Where there is not an exact match between fields within a message we attempt to
determine compatibility. Compatibility of compound fields requires compatibility of all
their mandatory parts. Compatibility of (atomic) fields requires what we call field name
compatibility and value type compatibility. Two atomic fields are value type compatible
if the type of the field in the sent message is a subset of the type of that field in the
received message. For example, if the sent message contains an integer, but a floating
point number is expected to be received.

However, value type compatibility alone is not likely to yield semantic compati-
bility. Typically the name of a field carries semantic value. We refer to this level of



www.manaraa.com

82 F. Dignum et al.

compatibility as field name compatibility. For analysis of the semantic compatibility
of two field names we require an ontology, and the ability to reason over that ontol-
ogy. The ontology could be provided by the agent, by the institution, or could be an
external ontology, or a combination of these. In our initial implementation, we make
the simplification that the ontology matcher returns true only if there is an exact match
of field names. However the more general case requires some form of ontological rea-
soning. We envisage this reasoning being done by a separate module (the “ontologi-
cal reasoner”) which could use more sophisticated reasoning to return true/false, or a
probability representing the degree of a match. Malucelli et al. [10] propose such an
ontological reasoning service to facilitate participation of agents in institutions.

In the example above we would hope that if the field “#region” type=string in the
institutional message was replaced by “#suburb” type=string, it could still be matched
by the ontological reasoner with the field ”#region” type=string in the agent message,
as region subsumes suburb. We do note however that this kind of ontological represen-
tation and reasoning is fraught with difficulty. The existence of agreed ontologies within
an application domain can be expected to simplify the problem somewhat.

Finally, it is possible that an agent may need to transition through a number of scenes
to obtain a successful outcome. Therefore, the institution will need to provide to the
IMA the full set of messages involving the initial role, and all roles it can transform
into within necessary scenes. For simplicity, at this stage role transformations should
be mapped back to the name of their first occurrence.

6 Protocol Compatibility

A protocol defines the “rules of procedure” for a conversation, that is, describes possi-
ble sequences of messages that interacting agents must follow in order to achieve their
goals. Given that agents can send and receive the right types of messages, the next step is
to check whether they send these messages in the right order, that is, whether their pro-
tocols are compatible. For example, protocol checking should detect an incompatibility
if agent A can send m1 followed by m2, but the recipient expects m2 followed by m1.

In order to check protocol compatibility we need a notation to capture protocols. This
notation must be expressible in a machine-readable form that can be used by the IMA.
A number of notations could be used, including BPEL4WS, WS-CDL, and AUML12.
In fact, for our discussion we do not make any assumptions about the notation. We use
AUML because it is the de-facto standard for describing agent interactions, because its
representation is compact, and because it has a machine-readable form [11].

Roughly speaking, the intuition behind protocol compatibility checking is the same
as for message compatibility checking: it is the sender who has the choice of what to
send, and thus the receiver needs to handle anything that the sender can send. For ex-
ample, if at a given point in the interaction the sender can send two messages, Confirm
flight and Decommit flight, then the recipient needs to be able to handle either option,
and may handle additional messages. However, if the recipient cannot handle, say, Con-
firm flight then the interaction may fail if the sender chooses to send Confirm flight. The
generalization of this intuition yields a definition of protocol compatibility: an agent’s

12 Agent UML: http://www.auml.org

http://www.auml.org


www.manaraa.com

Open Agent Systems ??? 83

protocol is compatible with the institution’s protocol if at any point in the interaction,
the agent’s protocol provides the agent with fewer options for messages that it can send,
and with more options for messages that it can receive with respect to the institution’s
protocol. Very similar ideas have also been developed independently in [12] and can
also be found in [13,14]. In [15] the notion of common protocols in open environments,
and ways to achieve common protocols have also been discussed.

We can formalize the above intuitions by using RI (respectively RA) to denote the
institution’s (respectively agent’s) protocol messages that the agent can receive at a
given point. Similarly, using SI (respectively SA) to denote the institution’s (respec-
tively agent’s) protocol messages that the agent can send at a given point in the interac-
tion. The above definition of protocol compatibility can be formalized as requiring that
at each point in the interaction SA ⊆ SI and RI ⊆ RA.

We now briefly consider four cases where, at a given point in the interaction, there
are differences between the protocols. If SA ⊂ SI then the agent follows a sub-protocol
of the one provided by the institution. For example, let the agent be a flight service that
uses the protocol in Figure 3a while the institution uses protocol 3b. At the end of the
protocol SA = {Confirm flight X} and SI = {Confirm flight X, Decommit flight X}.
This is OK, as long as the sub-protocol allows the agent to get from an entrance state to
an end state in the institution, which is the case in this example. However, if the agent
cannot get to an end state because it misses a necessary branch of the protocol then the
agent’s protocol is not suited.

If RI ⊂ RA then the agent is able to handle more messages than can be sent, and
this does not constitute a problem.

If SI ⊂ SA then, at that point in the interaction, there are messages that the agent’s
protocol permits the agent to send which are not permitted by the institution’s protocol,
and which will not be expected by the message’s recipient, thus making the protocols
incompatible. Similarly, if RA ⊂ RI then the protocols are incompatible because at
that point in the interaction the institution’s protocol indicates that the agent needs to be
able to handle certain messages which are missing in the agent’s protocol. For example,
if the institution has the protocol in Figure 3b and the customer agent has protocol 3a
then the customer agent does not expect a decommitment at the end, and will not be
prepared to handle it.

Note that incompatibility does not mean that any interaction will necessarily fail, just
that it may fail. It is quite possible, for example, that the flight service might choose to
send a commit message, which the customer agent can handle, rather than a decommit,
which it cannot.

More generally, instead of merely checking whether two protocols are compatible
as-is, it is possible to determine what constraints would make the protocols compatible.
For example, if the flight service is willing to accept a constraint that prevents it from
sending a decommit message, then the two protocols (3b at the institution and 3a at the
customer agent) become compatible. In order to be willing to adopt constraints, other
constraints may need to hold. For example, if the institution guarantees that all transac-
tions are performed within 1 minute then all options provided by the flight service are
still available when chosen by the customer, and a decommit is unnecessary.



www.manaraa.com

84 F. Dignum et al.

Customer Flight Service

Ask flight

Offer list flights

Choose flight X

Confirm flight X

Customer Flight Service

Ask flight

Offer list flights

Choose flight X

Confirm flight X

Decommit flight X

alt

Flight Book 

a b

Fig. 3. Example protocol

The discussion of compatibility so far has focused on a “pointwise” comparison be-
tween states. We now briefly consider compatibility if the two protocols are not of the
same length. For example, if one protocol has a sub-sequence of messages not present in
the other. If this sub-sequence is optional then this case is captured above. Otherwise, if
the sub-sequence occurs in the middle of a protocol then the protocols are not compatible.

However, if the sub-sequence occurs at the start or end of the protocol then the proto-
cols may be compatible if the sub-sequence can be skipped because it is only important
for the agent. For example, if a customer starts with choosing a flight without first asking
for a list of possibilities. However, if the sub-sequence is important for the institution
then it cannot be skipped. For example, if the institution needs an identification of the
customer agent before interacting with it further.

Concluding this brief sketch of protocol compatibility issues we can state that there
are some cases in which the protocols are not identical, but interactions might still be
successful. Sometimes, this also depends on the content of the messages and some-
times on the internal architecture of the agent. As usual, the more knowledge one has,
the more can be done. However, even with limited knowledge gained from standard
descriptions a rudimentary check can be made that could suffice for the majority of the
cases in practice.

7 Related Work

Open systems assume that the heterogeneous agents are designed and run independently
from each other and use their own motivations to determine whether to join an exist-
ing institution or another interaction space. However, currently, in most MAS, agents
are simply designed from scratch so that their behavior complies with the behavior de-
scribed by the role(s) it will take up in the society. Comprehensive solutions for open
environments require complex agents that are able to reason about their own objec-
tives and desires and thus decide and negotiate their participation in an organization. In
[16], the following requirements were identified for the effective design of open agent
environments:

1. Formal frameworks are needed for the specification of the society structure and
goals with verifiable and meaningful semantics in a way that does not require the
formal specification of participating agents.



www.manaraa.com

Open Agent Systems ??? 85

2. Mechanisms are needed through which prospective participants can evaluate the
characteristics and objectives of roles in the society, in order to decide about par-
ticipation.

3. Tools must be available that support an individual agent to identify specific re-
quirements and particularities of an organization and to adapt their architecture and
functionality to the requirements of an assumed role.

That same paper proposed a first step on the road to this solution (cf. [16]) by introduc-
ing a formalism to compare the specification of agents and roles and determine whether
an agent is suitable to enact a role. This solution is based on the OperA framework [9]
that fulfills the first requirement above by providing a formal organizational model that
is verifiable without the need to specify specific participating agents.

The work by Sierra et al, in the area of electronic institutions has been highly influ-
ential in the area of open agent systems [1]. They also faced the problem of how agents
could interact with an institution while the agents and institutions are designed and im-
plemented by different groups. They alleviated this problem by introducing the idea of
“skeleton agents” [17]. These skeletons consist of the communication patterns that an
agent needs to be able to function in the institution. The idea is that external parties
use the skeletons as a basis for developing their agents and thus have an easy way of
building agents that fit with the institution. The main restriction is that the agents are
still assumed to be developed explicitly for one particular institution.

In [18] an architecture is described in which highly heterogeneous teams are able to
cooperate. This is achieved by creating some semi-autonomous proxy agents that take
care of the coordination layer between the agents. In fact what this seems to do is extract
from the agents the part that they need in order to function within the coordinated team
framework. This is similar to what we would like to extract from an agent, but we do
not pre-suppose a certain type of interaction pattern as related to teamwork, but rather
any type of interaction within an institution.

There is of course also some work done concentrating on the use of “middle agents”
within the agent research community. Most notable is the work on RETSINA [19],
being one of the first to realize the benefits of using middle agents to connect different
parts of a system which each have their own goal and internal structure. The work that
comes closest to our purpose for using a middle agent is that of task delegation. The
middle agent matches task descriptions of demand and supply. However, in our case we
do not match task descriptions but rather interaction patterns and possibly goals

In a similar way the work of [20] is relevant. In that work middle agents were used
to manage subscriptions to different types of services. Services could be seen as very
simple forms of institutions. The main simplification is that a service has a very simple
interaction pattern and the interaction is with only one other party. Therefore, the match
between the capabilities and tasks of an agent and a description of what a service can
provide is relatively simple.

8 Discussion and Future Work

In this paper we have presented an approach to support open agent environments, where
independently created agents can enter suitable institutions, with the assistance of an



www.manaraa.com

86 F. Dignum et al.

IMA. This approach goes beyond the so called “skeleton agents” [17] that assist ex-
ternal parties to build agents that fit a specific institution. We assume standard descrip-
tions such as WSDL and WS-CDL to describe different interaction patterns in order
to perform the matching. Based on this, some basic compatibility checks can be made.
However, a more semantic matching requires introspection of the agent about its goals
and roles. Ontological reasoning also plays an important part in this matching.

The contributions of this paper are: the development of the IMA architecture for
facilitating entry of agents into institutions, and the identification and description of
reasoning processes (other than the ontological reasoning) which must be done by the
IMA, including identification of potential roles the agent can take on, matching of mes-
sages between the agent and institution, and checking protocol compatibility.

Further work includes an actual implementation of the IMA other than the basic
work done in this paper using one specific agent tool and one specific institution tool,
generating plug-ins to extract message and protocol descriptions from agents and in-
stitutions’ specifications, and exploration of more examples, using either standardized
ontologies, or existing ontological reasoners of various types, to better understand what
will work well in practice. This paper provides the framework and basis on which such
work can be continued. It also identifies some aspects of ISLANDER or similar systems
which are necessary for the proposed approach to work, such as institutional manage-
ment of role (or role name) changes as the agent moves between different scenes within
the institution.

Acknowledgments

We would like to acknowledge the support of the Australian Research Council and
Agent Oriented Software, under grant LP0453486, the Australian Department of Ed-
ucation, Science and Training, under grant CG040014. We also acknowledge the sup-
port of the Netherlands Organization for Scientific Research (NWO), under Veni grant
639.021.509. We thank the Australian Tourism Data Warehouse (ATDW) for the pro-
vision of live content for our travel and tourism agents. We also thank Carles Sierra
and Juan Antonio Rodriguez for their assistance in understanding and working with
ISLANDER.

References

1. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 348–366.
Springer, Heidelberg (2002)

2. Arcos, J.L., Esteva, M., Noriega, P., Rodrı́guez, J.A., Sierra, C.: Engineering open environ-
ments with electronic institutions. Engineering Applications of Artificial Intelligence 18,
191–204 (2005)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applications. Springer, Berlin, Germany (2004)

4. Sycara, K.: Multi-agent infrastructure, agent discovery, middle agents for web services and
interoperation. In: Luck, M., Mařı́k, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and
EASSS 2001. LNCS (LNAI), vol. 2086, pp. 17–49. Springer, Heidelberg (2001)



www.manaraa.com

Open Agent Systems ??? 87

5. Sycara, K., Wido, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among heteroge-
neous software agents in cyberspace. Autonomous Agents and Multi-Agent Systems 5, 173–
203 (2002)

6. Cheong, C., Winikoff, M.: Hermes: Implementing goal-oriented agent interactions. In: Pro-
gramming Multi-Agent Systems, 3rd International Workshop, The Netherlands (2005)

7. Dignum, V., Dignum, F.: Coordinating tasks in agent organizations. or: Can we ask you to
read this paper? In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, Springer, Heidelberg
(2007)

8. Odell, J., Parunak, H.V.D., Fleischer, M.: The role of roles in designing effective agent orga-
nizations. In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Castro, J. (eds.)
Software Engineering for Large-Scale Multi-Agent Systems. LNCS, vol. 2603, Springer,
Heidelberg (2003)

9. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in Logic.
SIKS Dissertation Series 2004-1. Utrecht University (2004)

10. Malucelli, A., Cardoso, H., Oliveira, E.: Enriching a MAS Environment with Institutional
Services. In: Environments for Multi-Agent Systems II, 2nd International Workshop, The
Netherlands (2005)

11. Winikoff, M.: Towards making agent UML practical: A textual notation and a tool. In:
First international workshop on Integration of Software Engineering and Agent Technology
(ISEAT 2005) (2005)

12. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of protocol conformance and
agent interoperability. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900,
pp. 265–283. Springer, Heidelberg (2006)

13. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two Web Services Compatible?
In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324, pp. 15–28. Springer,
Heidelberg (2005)

14. Yellin, D., Strom, R.: Protocol specifications and component adaptors. ACM Transactions on
Programming Languages and Systems (TOPLAS) 19, 292–333 (1997)

15. Paurobally, S., Cunningham, J.: Achieving common interaction protocols in open agent en-
vironments. In: AAMAS, Challenges in Open Agent Systems 2003 Workshop, Melbourne,
Australia (2003)

16. Dastani, M., Dignum, V., Dignum, F.: Role assignment in open agent societies. In: Pro-
ceedings of Second International Joint Conference on Autonomous Agents and Multi-agent
Systems (AAMAS), ACM Press, New York (2003)

17. Vasconcelos, W., Sabater, J., Sierra, C., Querol, J.: Skeleton-based agent development
for electronic institutions. In: Proceedings of First International Joint Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS), pp. 696–703. ACM Press, New York
(2002)

18. Scerri, P., Pynadath, D., Schurr, N., Farinelli, A., Gandhe, S., Tambe, M.: Team oriented
programming and proxy agents: The next generation. In: Dastani, M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, Springer, Heidelberg
(2004)

19. Sycara, K., Paolucci, M., Velsen, M.V., Giampapa, J.: The RETSINA MAS Infrastructure.
Autonomous Agents and Multi-Agent Systems 7, 29–48 (2003)

20. Mbala, A., Padgham, L., Winikoff, M.: Design options for subscription managers. In: Pro-
ceedings of the 7th International Bi-Conference Workshop on Agent-Oriented Information
Systems (AOIS) (2005)



www.manaraa.com

An Agent Framework for Processing FIPA-ACL

Messages Based on Interaction Models

Ernesto German and Leonid Sheremetov

Mexican Petroleum Institute, Eje Central Lazaro Cardenas 152, San Bartolo
Atepehuacan, Distrito Federal, Mexico

{egerman,sher}@imp.mx

Abstract. Interaction engineering is a key issue to effectively build
Multi-Agent Systems. It requires software abstractions, components and
control structures to manage interactions among agents and to improve
infrastructures at runtime. We propose a framework for automatic pro-
cessing of interactions generated using FIPA-ACL, a language widely
accepted for agent platforms. This framework includes three elements:
i) an agent interaction architecture to systematize interaction process-
ing tasks, ii) interaction models to build re-usable validated code used
to check different phases of interaction processing associated with mes-
sage semantics, and iii) components and control structures implementing
interaction architecture for a particular agent platform. The paper de-
scribes the implementation details of the proposed approach developed
within the CAPNET agent platform and illustrates it by example.

Keywords: Interaction architecture, interaction models, FIPA-ACL.

1 Introduction

Interaction among agents is a key feature in agent-based open systems and is being
mentioned as a qualitative characteristic of interconnected systems of the future
[1]. Agent-oriented interactions generally occur through a high-level declarative
agent communication language (typically based on speech act theory). They range
from simple semantic interoperation, through traditional client-server interaction,
to rich social interactions that should be handled in a flexible manner. Thus, agents
need a computational apparatus to make context-dependent decisions about the
nature and scope of their interactions and to respond to interactions that were not
necessarily foreseen at design time [2].

Recently, much effort has been made towards making agents interoperate in
open environments. Though several interaction frameworks like, for instance,
goal-based Hermes [3] or role-based BRAIN [4], have been proposed, this goal
has not been achieved yet. As a result, a deployment of a worldwide open testbed
environment underlined the lack of spontaneous exchanges among agents run-
ning in this environment [5]. In most of the applications, agents can only interact
with agents they have been designed to interact with and cannot handle mes-
sages that are not specified. On the contrary, an agent which could interpret the

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 88–102, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

An Agent Framework for Processing FIPA-ACL Messages 89

sense of messages, as defined by their semantics rather than their syntax, could
intrinsically support more flexible interaction [6]. Multi-Agent System (MAS)
infrastructures usually give abstractions for basic services for communication,
interoperability and interaction, supporting only syntactic validation of ACL
messages. However, the increasing complexity of MAS integration requires more
effective descriptions of interactive behaviors, based on message semantics and
pragmatics [7] [8].

Although FIPA-ACL is the most commonly used ACL in MAS agent platforms
[9], a relatively little effort has been made to specify the basic agent architecture
in order to attend common activities that must be done for processing syntax,
semantics and pragmatics derived from each single communicative act and, then,
from agents interactions. The interaction architecture has been left open to be
a programmer’s decision in such way that message processing becomes unstruc-
tured, repetitive and prone error task for every agent that is part of a MAS.
A lot of code must be written in order to check the same message attributes,
for example, validating the content syntax through a given content language,
validating the content semantics using ontology and validating the pragmatics
of each message. If an agent is to be a part of an open system and if it wants
to interoperate with heterogeneous agents, these validation activities are very
important and must be carried out at runtime.

The paper is focused on the approach to developing an agent interaction
framework introducing convenient software components to manage interactions
as well as the control structures supporting them. We try to define guidelines for
the specification of first-class processes and components in the agent internals.
We define the agent interaction architecture, inspired and guided by the agent
communication language like FIPA-ACL, as a basic engineering tool to improve
computational infrastructure. The proposed approach includes mechanisms help-
ing to systematize interactions engineering through the modularization and re-
utilization of programming units called Interaction Models (IM). These models
integrate the components that are found implicitly in FIPA-ACL semantics and
message structure specification [9] such as dynamic execution of requested ac-
tions, content language syntax validation, semantic validation of ontology-based
content, and interaction processing being executed at runtime. Proposed archi-
tecture and interaction models are general purpose and independent from any
MAS infrastructure. Nevertheless, in order to be tested and verified, we have
implemented them within the CAPNET agent platform [10]. The rest of the
paper is structured as follows. Section 2 contains the description of the proposed
agent interaction framework. Section 3 shows technical details of implementa-
tion of the framework on the CAPNET agent platform. Section 4 summarizes
the results and discusses the related work followed by conclusions.

2 Framework for Agent Interaction

Interactions form a key element of agent behavior; that is why in order to im-
prove MAS interactions engineering, agent interaction architecture should be an



www.manaraa.com

90 E. German and L. Sheremetov

essential part of an agent. This architecture should be independent of any par-
ticular infrastructure. In this section, a general framework integrating different
aspects of interaction processing is proposed. We begin with the basic definitions
to make homogeneous the terms involved in the framework.

2.1 Basic Definitions of the Interaction Framework

The structure of a FIPA-ACL message includes attributes specified in the com-
munication model, such as sender, receiver, communicative act, content, content
language (CL), ontology, conversation-identifier and interaction protocol (IP).
In order to define our framework, based on these concepts, we introduce the
following definitions.

Definition 1. An Interaction Model (IM) represents a modular unit permitting
the validation of a simple interaction. A Simple Interaction is a unit of com-
munication composed of a FIPA-ACL message and the interaction space of each
participating agent1. Two or more simple interactions form Composed Interac-
tion where the conversation-identifier and protocol attributes are the same. IM
includes modules for programming syntax and semantics content validation, fea-
sibility preconditions, rational effect of messages and the termination condition
of the interaction.

Definition 2. An Interaction Space (IS) is an environment that the agent can
access in order to validate interactions at runtime. It is integrated by the follow-
ing components: message transport services (MTS) available for interchanging
physical messages, a knowledge base (KB), content languages, ontologies, inter-
action protocols and interaction models. In other words, interaction space stores
interaction capabilities of the agent.

Definition 3. The Agent Interaction Architecture (AIA) is defined as a com-
ponent to control creation and processing of interactions through validation of
interaction models within the interaction space of an agent.

2.2 Interaction Architecture

The AIA of an agent enables interaction processing. AIA contains three main
layers composed of several components as shown in Fig. 1. Interaction Space
stores agent interaction capabilities, which are used during validation activities.
Runtime Interaction Process is composed of a set of engines implementing mes-
sage processing. In the middle of the architecture is the Validation Mechanism.
Messages are interchanged through the messaging mechanism. This mechanism
connects the MTS and the internal architecture of an agent. For each message,
messaging does the following: i) validates message encoding syntax, ii) looks
for an IM within the interaction space, taking into account message attributes,
1 Our definition of the interaction model captures the interaction representation from

the agent local view [11].



www.manaraa.com

An Agent Framework for Processing FIPA-ACL Messages 91

Fig. 1. Agent interaction architecture

content language and ontology, iii) sends the message to the main validation
mechanism corresponding to the identified IM activating send or receive valida-
tion cycles. Interaction models form the kernel of the interaction process. They
implement processing templates composed of validation activities when a new
message is being processed. When each engine have to validate an IM, they look
for concrete interaction componentes stored in the interaction space which are
dynamically instantiated and used. CLs are used to validate syntax of message
content and ontologies to validate semantics of message content. For the valida-
tion of the Rational Effect (RE) and Feasibility Preconditions (FP) of a message
an agent can access the KB where actions, propositions and domain objects are
storede and consulted in simple interactions. Finally, IPs could be dynamically
instantiated when simple interactions use an explicit protocol.

Validation process is divided into five phases (Fig. 2). Validation activities
corresponding to each phase are implemented by IM modules and are invoked
by different execution engines. General validation activity is composed of two
processes: the first one corresponds to the sender agent where IMs are used
to validate content syntax (phase I), content semantics (phase II), feasibility
preconditions (phase III) and verification of interaction finalization (phase V).
During the receiver agent’s process, IMs are used to validate content syntax
and semantics (phases I and II), message’s RE (phase IV) and conditions of
interaction finalization (phase V). The real validation task is implemented and
executed in each IM. Special cases are the phases III and IV. During phase
III, FPs for the communicative act represented by the IM are checked. This
phase is only used in the sender agent and is realized by the FPEngine. In a
similar manner, phase IV is executed by the mechanism only in the receiver
agent by calling the services from the Engines either for Simple or for Composed
Interactions (ESI and ECI in Fig. 2).

The CLEngine is a component designed to apply the syntax validation for
each IM. To do this, CLEngine looks for a component that implements the CL



www.manaraa.com

92 E. German and L. Sheremetov

Fig. 2. Validation mechanism

in the interaction space. If a CL is available, it indicates that the agent is capable
to understand the syntax of the content represented in such CL. In this case,
the engine invokes the CL validation module of the IM that is being processed.

Ontology Engine processes interactions that have an explicit ontology in their
messages. It searches for a concrete ontology registered in the interaction space.
Then the agent tries to understand the meaning of the entities in the message
content. The engine invokes the ontology validation module of the IM that is
being processed. The Engine for Simple Interaction implements the validation of
message’s RE calling the respective RE module implemented in each concrete IM.
Due to asynchronous concerns in this type of communication, usually the RE is
completed involving other mechanisms and components i.e. the KB, depending
on the semantics of each communicative act. When the RE is achieved, this
engine passes the control to the Interaction Finalization module to complete the
tasks required by the sender to finish the interaction.

Finally, the Engine for Composed Interactions is a component for validating
the RE of interactions forming part of a conversation. The main validation pro-
cess determines if a simple interaction is part of a composed interaction when the
related message contains both an IP and conversation-identifier fields. Being this
the case, the IM is passed to ECI and not to ESI. This engine is used to check
if the interaction protocol is in the interaction space. If so, the engine creates
an instance of the concrete component that implements this IP. Then, messages
of the conversation are delivered to the concrete IP in order to validate the RE.
It is important to mention that ECI should have a special component to store
and manage the access to conversations information i.e. IP state and results for
both finalized and in-progress conversations. This component is a conversation
manager, similar to those known in the MAS infrastructures. The purpose of the
conversation manager is to provide an interface between an agent and an appli-
cation (maybe at user level) enabling checking of composed interaction results
in a synchronous way.



www.manaraa.com

An Agent Framework for Processing FIPA-ACL Messages 93

As we see, the notion of interaction model is a key concept of this framework.
An IM is composed of the modules covering five validation phases: validation of
the content structure with a content language, validation of content semantics
with ontology, validation of feasibility preconditions, validation of rational effect,
and validation of the termination condition.

3 Implementation of the Framework within the CAPNET
Platform

The agent interaction architecture is a component of each agent that uses
FIPA-ACL.However, interaction engineering requires this component being tested
in a concrete computational context.To be implemented, the CAPNETagent plat-
form was selected because it accomplisheswith several important characteristics of
interaction that we are interested in, such as the availability of different message
representations and content languages, along with the facility to build different
ontologies and interaction protocols [10].

3.1 Implementation of Agent Interaction Architecture

In CAPNET, the framework has been implemented in the BasicAgent class. This
class, as well as the entire platform, has been programmed in C#. The AIA
is integrated by a set of interconnected components doing different activities
related to concurrent interaction processing at runtime (Fig. 3). The messaging
mechanism connects the MTS (which encapsulates several transport services)
of CAPNET with the AIA through .NET remote objects technology. To send
messages, it takes advantage of asynchronous invocation of the MTS remote
object. On the contrary to message receiving, an asynchronous remote event
has been implemented within the MTS together with a system of delegated
methods for each agent. The interaction space is a class which contains a set
of tables where concrete object instances are stored at runtime. Each object
is an interaction capability of the agent that will be used as a template when
necessary, to process interactions with different features. In Table 1, the main
classes of objects that were implemented in order to fill the IS and to test the
whole architecture are shown.

In CAPNET, each kind of objects used in the IS derives from a generic ab-
stract class implementing the description of basic interfaces and functionality for
validating different aspects of the component during the validation cycle. These
generic classes bring the AIA the following design and implementation benefits:

– Share the programming interface for inheriting different concrete classes.
– Validation mechanisms can create and access objects in order to apply run-

time polymorphism advantages.
– It is easier to implement and add components (CLs, Ontologies, IMs and

IPs) by reusing components both at design time and at runtime.



www.manaraa.com

94 E. German and L. Sheremetov

Fig. 3. Interaction architecture on CAPNET

Table 1. Interaction space components

Component Implementation Features

Message HTTPManager Table with the objects
Transport TCP-Remoting manager representing types of services

Content CAPNET-CL, proprietary CL based Table with the
Languages on the Knowledge Representation objects representing CL types

Format described in [12], and SL0.

Ontologies CAPNETOntology Table with the objects
representing ontologies. The
entities are coded with
CAPNET-CL

KB KBManager Coded with CAPNET-CL

Interaction InteractionProtocol Table with the objects
Protocols FIPARequest representing IP classes

FIPA-CNP

Interaction InformInteractionModel Table with the objects
Models RequestInteractionModel representing IMs.

CancelInteractionModel . . .

The mechanism of main validation has been implemented by means of a two-
threaded class called InteractionCycle. It holds a single instance of every engine
component (CLEngine, OntologyEngine, FPEngine, SIEngine and CIEngine)
and two public queues (q-IN, q-OUT). In the main thread, interaction models



www.manaraa.com

An Agent Framework for Processing FIPA-ACL Messages 95

are received from the messaging component and stored in the q-IN. The second
thread actually is dedicated to process validation tasks through different engines,
depending on the view (sender o receiver) that the IM requires. When an internal
engine fails validating, the respective agent is informed (either by returning false
in its send message method to the sender or by sending back a generic not-
understood to the receiver). When the IM has been validated successfully, the IM
is stored in the q-OUT. Since each engine has the same threading infrastructure,
multiple IMs can be validated concurrently and orderly.

3.2 Implementation of Interaction Models

In this section we show by example how the idea of programming interaction
models works. For this purpose, CAPNET facilitates the programming of inter-
action models by giving the GenericInteractionModel base class. This class gives
virtual methods to implement the interface IInteractionModel shown below.

public interface IInteractionModel{
bool validateContentLanguage();
bool validateOntology();
bool validateFeasibilityPreconditions();
bool validateRationalEffect();
bool verifyInteractionFinalization();}

When specific IMs need to be implemented, developers have to inherit from
GenericInteractionModel base class and then, override methods of IInteraction-
Model interface. As an example, we consider an IM of request communicative

Table 2. Example of request communicative act

Semantics Example of message

<i, request (j, a)> <fipa-message act=”request”><sender><agent-identifier>
FP: FP(a) [i\j] <name id=”Coordinator@imp.mx”/><addresses>
Bi Agent(j, a) <href=”http://192.168.142.63:4444/MTSURI”/></addresses>
BiIj Done(a) </agent-identifier> </sender><receiver>
RE: Done (a) <agent-identifier><name id=”transport1@provider1”/>

<addresses><”href=http://192.168.142.63:4444/MTSURI”/>
</addresses></agent-identifier> </receiver>
<content><requestContent>”type=CAPNETCLACTION”>
<RDF0Action id=”idTransport”><actor>transport1</actor>
<act>transportPeople<act/><ActionArguments> <property>
<propertyname>workersNum</propertyname><propertytype>
System.Int32</propertytype><propertyvalue>200
</propertyvalue></property></ActionArguments>
</RDF0Action></requestContent></content>
<language>capnetcl</language><content-language-encoding
>fipa.acl.rep.xml.std </content-language-encoding>
<ontology>emergency</ontology></fipa-message>



www.manaraa.com

96 E. German and L. Sheremetov

act. Its semantics along with an example are shown in Table 2. Request semantics
indicates that the sender is requesting the receiver to perform some action repre-
sented in the message content [9]. Also when a message declares a formal CL and
ontology (”capnetcl”’ and ”emergency” in this case), both sender and receiver
agents must have (in their interaction spaces) concrete classes for these CL and
ontology along with an IM implemented with these features. In the case of the
example, the IM class is called RequestInteractionModel. First, the validateCon-
tentLanguage module instantiates ”capnetcl”’ from the interaction space. The
AIA can get the CL as a generic object (GenericContentLanguage) and then uses
its function to validate the syntax of the specific action (requestCO.validate). A
validateOntology module works in a similar way. Internally, CAPNET-CL and
CAPNET-Ontology classes do the validation of the action ”transportPeople” to
check its representation and parameters. In the next code example CL validation
is shown:

public override bool validateContentLanguage(){
bool val=false;
Hashtable _clTable=ISpace.getCL();
GenericContentLanguage cl=null;
if (_clTable.ContainsKey(this.CLName)){
cl=(GenericContentLanguage)_clTable[this.CLName];
val=cl.requestCO.validate(this.message.getContent());}

return val;}

The FP validation module has to check if the sender agent believes that the
receiver agent can do the action ”transportPeople”. A way to do this is searching
the requested action in the CAPNET-DF before sender sends the message as
shown in the code example below:

public override bool validateFeasibilityPreconditions(){
//Gets the type of the implementation class
Hashtable _clTable=ISpace.getCL();
GenericContentLanguage cl=null;
cl=(GenericContentLanguage)_clTable[this.CLName];
val=cl.requestCO.validate(this.message.getContent());
if (searchActionON_CAPNETDF(cl.requestCO.MyAction))
return true;
return false;}

The validateRationalEffect module is encouraged to check whether the re-
quested action is executed or refused. This functionality almost always depends
on specific application rules but in the most general way (using CAPNET-CL ac-
tion and request content object validation functions), we supose by default that
the receiver agent is always ready to execute the requested action as follows:

public override bool validateRationalEffect(){
CAPNETRDF0.CAPNETRDF0RequestCO requestCO=new



www.manaraa.com

An Agent Framework for Processing FIPA-ACL Messages 97

CAPNETRDF0.CAPNETRDF0RequestCO();
CAPNETRDF0.RDF0Action action=null;
if (requestCO.validate(_content)){
action=requestCO.getAction();
this.ia.SIEngine.PendingActions.Add(_action);
return action.execute();}}

When the action is executed, the results are stored into internal structures
of the class RDF0Action. Then, in the verifyInteractionFinalization module,
receiver agent analyzes the internal structure of the executed action in order to
determine whether the action finished successfully or failed. In the former case,
an inform message is generated to indicate the finalization of the original request
interaction. In the latter case, a failure message is created and sent back to the
sender agent. In both cases, agents obviously must also have IMs to implement
inform and failure in order to be sure that the interaction has finalized. For
coordinating activities, in CAPNET the AIA uses attributes of messages to
determine whether other messages are used to finalize previous interactions. In
order to make this mechanism operational, the developers must specify each
interaction capability (CL, ontology, IP, IM) in the interaction space to make
them available at runtime.

3.3 Example of the Validation Process

When a single message is received by messaging (either for sending or receiving)
firstly, the message structure is validated using the message parsers available for
CAPNET (string and XML parsers). Then, if it is correct, the mechanism looks
for an interaction model in order to satisfy the message requirements (related to
the type of communicative act, name of CL and name of ontology). If an IM is
registered in the IS, it clones the registered object and returns the IM copy to
messaging. In the following we illustrate the main computation process of the
interaction architecture for the scenario of the request message described above.

Messaging gets an instance of the RequestInteractionModel class because it
has been implemented in accordance with the capnetcl content language and the
emergency ontology. It depends upon the agent’s role what validation cycle the
architecture will follow. In the case of the message sender, the send validation
cycle is activated in order to process the message before it is sent. The inter-
action model is passed to the CLEngine component. This component enqueues
the interaction model and invokes its validateContentLanguage asynchronously.
The results of the validation are stored in the CLEngine and are made available
for the validation cycle. If the interaction model validation fails then the mes-
sage is not sent because it does not accomplish with the syntax of that content
language. If validation is successful then the interaction model is passed to the
ontology engine component where the validateOntology module is invoked and
the emergency ontology is used to validate the transportPeople action.

Next, the request interaction model is given to the FPEngine component. At
this moment, the validateFeasibilityPreconditions is executed. After this valida-
tion, the send validation cycle has to decide whether the message is sent or not.



www.manaraa.com

98 E. German and L. Sheremetov

When the message is sent, the verifyInteractionFinalization module is called to
make the agent aware of the finalization of the interaction. On the contrary,
when the message is not sent, it indicates that something was wrong in the
validation process. For example, the content of the message can simply has a
bug. This processing is very useful while designing and debugging the content of
agent interactions before the agent is released. In other cases, at least one fea-
sibility precondition is not fulfilled at runtime. While receiving a message, the
process is very similar to the send validation cycle in the first two phases. How-
ever, for the third phase, the validation process invokes the interaction model
validateRationalEffect module. The receive validation cycle finishes when the
verifyInteractionFinalization is executed. For composed interactions, the pro-
cessing mechanism is similar since each simple interaction is processed but when
the rational effect is validated, the interaction model is delivered to the engine
for composed interactions in order to be managed by an interaction protocol.

We have implemented 18 interaction models and also have been testing the
framework on CAPNET through the implementation of an open MAS proto-
type. There, heterogeneous agents interact to realize operations and interchange
information to evacuate oil platforms [13]. We have designed platform, hotel and
transport agents and consider the case that hotel and transport agents are im-
plemented by third parties. In the context of these agents, we have reused and
extended interaction models, by sharing CAPNET-CL and three different on-
tologies represented with CAPNET-Ontology (emergency, accommodation and
transport). In each evacuation experiment different platform, hotel and transport
agents could interact using the implemented interaction models.

4 Discussion and Related Work

In open environments, agents are designed by different vendors and their inter-
nal structures are different too. When agent interactions are based on the same
ACL, it seems to be necessary that agents behave according to their interaction
capabilities. The proposed approach is developed within the open research lines
which refer to interaction validation and verification models [14] [15] [16] and
agent architectures and infrastructures for open systems [17]. We have tried to
stand out the importance of engineering agents from two perspectives: autonomy
and heterogeneity to guarantee successful interactions at runtime. Autonomy is
understood in the sense that agents are able to determine by themselves whether
they can process unforeseen messages at runtime depending on their own inter-
action capabilities. On the other hand, heterogeneity refers to the agent’s ability
to take into account at runtime the interaction capabilities of the others, without
any interaction between software developers.

Agent platforms, such as JADE [18], usually provide a limited support for
autonomy within their basic functionality. Moreover, they lack support for in-
teroperability because they do not take into account the semantics of the agent
communication language. The mechanisms to support interactions are based on
simple routing of ACL messages by defining strategies to deliver messages to



www.manaraa.com

An Agent Framework for Processing FIPA-ACL Messages 99

execution units. The programming of message processing consists in associating
messages to a specific unit (task, action, node, behavior and so on). However,
there are no mechanisms to do interaction validation to assure the correct mean-
ing and the context of the message at runtime. Such common activities as struc-
ture and meaning analysis of the content, semantic concerns of communicative
acts and reasoning about a concrete interaction protocol typically are left to the
developer. From the interaction engineering point of view, this freedom makes
it difficult and inflexible the implementation of the architecture of interactions
when agents try to process and understand the meaning of communications.

Several approaches have been developed to bring together BDI-like frame-
works with FIPA compliance communication (JADEX [19] and FIPA-JACK
[20]. A very close approach to our framework is PARADE [21]. The goal behind
is to provide the agent developer with a goal-oriented agent architecture capable
of promoting inter-operability and supporting autonomy exploiting the seman-
tics of FIPA ACL. A strong limitation of PARADE is the underlying mental
states theoretic model and its relation with messages content entities. Another
limitation is that it considers interactions based on protocols but not on single
interactions. The main difference with our framework is that the PARADE ar-
chitecture does not implement a concrete message validation process. Another
related approach is developed in the RICA framework [7] which is focused on the
reuse of communicative components by specifying different communicative roles
and interactions in order to encapsulate application-dependant functionality.
Similar to our approach, RICA pretends to relieve programmers from tasks as-
sociated with the management of interactions by separating interaction concerns
through special reusable and extensible software modules. The main difference
is that RICA focuses exclusively on the pragmatics of the FIPA-ACL messages.

The Semantic Agent framework is an extension for the JADE platform [6]
where the developed agents not only automatically interpret the incoming mes-
sages according with their formal meaning but they also automatically send
proper messages in response to the interpretation. Still, there are three main dif-
ferences with the proposed agent interaction architecture. First, that approach
is only focused on two semantic issues (feasibility preconditions and rational ef-
fect) encapsulated into Semantic Interpretation Principles modules compared to
the five phases of validation included in our framework. The second difference
with that work is related to its so called Semantic Representation. It means that
agents only can interact with a particular content language, while our framework
is designed to resolve at runtime what content language is required to check the
structure of the content. Finally, the third difference is the lack of support of
explicit ontologies during interactions. The last two aspects of Semantic agents
for JADE are strong limitations in comparison with our framework.

In CAPNET, the agent architecture is designed to build heterogeneous agents
using generic classes for interaction that can be reused or extended in any MAS.
Other frameworks can provide their own implementation of the agent architec-
ture so that their agents are able to share interaction capabilities using different
programming tools and even different software technologies. Having interaction



www.manaraa.com

100 E. German and L. Sheremetov

models and an AIA processing them, has three advantages. Firstly, the level of
agent autonomy is improved. Whenever an agent interacts with other hetero-
geneous agents, it will be able to process interactions automatically. Success of
processing messages will be a task done by AIA depending on the interaction
capabilities at runtime. Secondly, interaction engineering is improved. In the ex-
ample of request communicative act we implemented the IM in such a way that
an agent could reuse it in any request-type interaction. This IM implementation
can be shared to implement different agents participating in open MAS without
any change. This facilitates the development of new heterogeneous agents. Ob-
viously, if requirements of interactions are different (for example new FP or RE
are part of the interaction) developers only need to override the modules that
require these changes.

The proposed framework requires less code written. Without AIA and IM
each validation must be done by developers for each interaction at design time.
As usual, while using available MAS infrastructures, developers have to consider
all the scenarios of interaction that agents could participate in. This technique
is very limited and inflexible for open and heterogeneous MAS. In contrast,
our framework helps interaction engineering by reducing and automating sig-
nificantly the number of code lines dedicated to interaction processing because
the IMs are implemented only once for each communicative act and can be re-
used for different CLs and ontologies that share the generic classes. The AIA
and engines are able to do the real validation tasks so that programmers can
concentrate more on the design and implementation of MAS application than
on routine tasks for interaction processing.

Although our framework has been tested for FIPA-ACL, it can be applied
to interaction among agents that use similar agent communication languages
such as KQML [22] where the interactions are defined in terms of speech acts,
content languages, ontologies, preconditions and post-conditions. In concrete
implementation of agent interaction architecture, an important issue is how to
manage messages when interactions are out of the scope of the interaction space.
In such a case, agents must have an inter-built support to process those messages
and developers have the obligation of implementing message processing. Another
concern about our framework is how to build dynamic interaction protocols.
Several specific methodologies like AUML [23] and approaches like enlisted in
[24] could be implemented as software components in a suitable way that the
Engine for Composed Interaction could use.

5 Conclusions

In this paper we described a framework to process FIPA-ACL messages. The
message processing is divided into five interaction phases covering the most com-
mon aspects of FIPA-ACL: syntax validation of content, semantic validation of
content, validation of message feasibility preconditions, validation of message ra-
tional effect and validation of termination conditions. We introduced the notions
of i) interaction model as a key programming unit to encapsulate the code for



www.manaraa.com

An Agent Framework for Processing FIPA-ACL Messages 101

each interaction phase and ii) interaction space as a part of the environment
where agent interaction capabilities are stored and accessed at runtime. Interac-
tion models are processed at runtime within the agent interaction architecture
composed of several validation engines enabling concurrent message processing.
A computational implementation for this framework was developed within the
CAPNET agent platform.

Our framework gives a structured and automatic way to process interactions
that not only known at design time, but also could occur at runtime in open
agent systems. We give the capabilities and components to manage several phases
of interactions and then, with the AIA, we enable agents with capabilities to
analyze messages and then decide if they can be processed in accordance with
the requirements. This ability provides a runtime autonomy in understanding
interactions based on FIPA-ACL communicative acts and conversations. In the
future, we are going to focus on coordination and scalability concerns in order
to build a more robust and complete agent architecture for open MAS.

Acknowledgement. The first author would like to thank CONACYT and the
IMP for supporting the Ph.D. studies that originated this research.

References

1. Zambonelli, F., Van Dyke Parunak, H.: Signs of a Revolution in Computer Science
and Software Engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW
2002. LNCS (LNAI), vol. 2577, pp. 13–28. Springer, Heidelberg (2003)

2. Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software Engineering, 1st
edn. Springer, Heidelberg (2001)

3. Cheong, C., Winikoff, M.: Hermes: Designing goal-oriented agent interactions.
In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 16–27.
Springer, Heidelberg (2006)

4. Cabri, G., Ferrari, L., Leonardi, L.: Supporting the Development of Multi-Agent
Interactions via Roles. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS,
vol. 3950, pp. 154–166. Springer, Heidelberg (2006)

5. Willmott, S. (ed.): Technical Input and Feedback to FIPA from Agentcities.RTD
and the Agentcities Initiative. Agentcities Task Force Technical Note 00003, ISSN
1465-3842 (2003), http://www.agentcities.org/note/00003/

6. Louis, V., Martinez, T.: The Jade Semantic Agent: Towards Agent Communication
Oriented Middleware. AgentLink News Journal (18) (2005)

7. Omicini, A., Ossowski, S., Ricci, A.: Coordination Infrastructures in the Engi-
neering of Multiagent Systems. In: Bergenti, F., et al. (eds.) Methodologies and
Software Engineering for Agent Systems - An AgentLink Perspective, Kluwer, Dor-
drecht (2004)

8. Serrano, J.M., Ossowski, S.: On the Impact of Agent Communication Languages
on the Implementation of Agent Systems. In: Klusch, M., Ossowski, S., Kashyap,
V., Unland, R. (eds.) CIA 2004. LNCS (LNAI), vol. 3191, pp. 92–106. Springer,
Heidelberg (2004)

9. Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification http://www.fipa.org/specs/fipa00037/ and FIPA ACL Message
Structure Specification (2003), http://www.fipa.org/specs/fipa00061/

http://www.agentcities.org/note/00003/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00061/


www.manaraa.com

102 E. German and L. Sheremetov

10. Contreras, M., German, E., Chi, M., Sheremetov, L.: Design and Implementation
of a FIPA Compliant Agent Platform in.NET. Journal of Object Technology 3(9),
5–28 (2004) (Special issue: .NET Technologies)

11. Platon, E., Sabouret, N., Honiden, S.: Modelling Interactions in Assistant Teams.
In: International Conference on Active Media Technologies, pp. 383–388 (2005)

12. Sheremetov, L., Batyrshin, I., Filatov, D., Mart́ınez-Muñoz, J.: An Uncertainty
Model for Diagnostic Expert System Based on Fuzzy Algebras of Strict Mono-
tonic Operations. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS
(LNAI), vol. 4293, pp. 165–175. Springer, Heidelberg (2006)

13. Sheremetov, L., Contreras, M., Valencia, C.: Intelligent Multi-Agent Support for
the Contingency Management System. Int. J. of Expert Systems with Applica-
tions 26(1), 57–71 (2004)

14. Colombetti, M., Fornara, N.: A Commitment-Based Approach to Agent Commu-
nication. Applied Artificial Intelligence 18, 853–866 (2004)

15. Agerri, R., Alonso, E.: Normative Pragmatics for Agent Communication Lan-
guages. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau,
I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER
Workshops 2005. LNCS, vol. 3770, pp. 172–181. Springer, Heidelberg (2005)

16. Viroli, M., Ricci, A.: Instructions-Based Semantics of Agent-Mediated Interaction.
In: Jennings, N.R., et al. (eds.), pp. 102–109. ACM Press, New York (2004)

17. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Based Computing. Agent
Technology Roadmap. In: European Coordination Action for Agent-Based Com-
puting (IST-FP6-002006CA) (2005)

18. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a java agent development
framework. Multi-Agent Programming: Languages, Platforms and Applications. In:
Bordini, R., et al. (eds.) Multiagent Systems, Artificial Societies, and Simulated
Organizations, vol. 15, pp. 125–148 (2005)

19. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine, Multi-
Agent Programming. In: Bordini, R., et al. (eds.), pp. 149–174. Springer Science,
Business Media Inc. (2005)

20. Kenichi, Y.: FIPA JACK: A plug-in for JACK intelligent agents. Technical report,
RMIT University (September 2003)

21. Bergenti, F., Poggi, A.: A development toolkit to realize autonomous and interop-
erable agents. In: International Conference on Autonomous Agents, pp. 632–639
(2002)

22. Finin, T., Labrou, Y.: KQML as an agent communication language. In: Bradshaw,
J.M. (ed.) Software Agents, pp. 291–316. MIT Press, Cambridge (1997)

23. Odell, J., Nodine, M., Levy, R.: A Metamodel for Agents, Roles, and Groups. In:
Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 78–92.
Springer, Heidelberg (2005)

24. Chen, B., Sadaoui, S.: A Generic Formal Framework for Multi-agent Interaction
Protocols. Technical Report TR 2004-05 ISBN 0-7731-0483-6 Department of Com-
puter Science, University of Regina, Regina SK, Canada (2004)



www.manaraa.com

A Methodology for Developing Multiagent

Systems as 3D Electronic Institutions

Anton Bogdanovych1, Marc Esteva1, Simeon Simoff1, Carles Sierra2,
and Helmut Berger3

1 Faculty of IT, University of Technology Sydney, Australia
{anton,esteva,simeon}@it.uts.edu.au

2 Artificial Intelligence Research Institute (IIIA), CSIC, Campus UAB, Spain
sierra@iiia.csic.es

3 ECommerce Competence Center, Vienna, Austria
helmut.berger@ec3.at

Abstract. In this paper we propose viewing Virtual Worlds as open
Multiagent Systems and propose the 3D Electronic Institutions method-
ology for their development. 3D Electronic Institutions are Virtual
Worlds with normative regulation of interactions. More precisely, the
methodology we propose here helps in separating the development of
Virtual Worlds based on the concept of 3D Electronic Institutions into
two independent phases: specification of the institutional rules and de-
sign of the 3D interaction environment. The new methodology is supplied
with a set of graphical tools that support the development process on
every level, from specification to deployment. The resulting system facil-
itates the direct integration of humans into Multi-Agent Systems as they
participate by driving an avatar in the generated 3D environment and
interacting with other humans or software agents, while the institution
ensures the validity of their interactions.

1 Introduction

The field of Multiagent Systems (MAS) focuses on the design and development
of systems composed of autonomous entities which act in order to achieve their
common or individual goals. Several methodologies based on the MAS paradigm
have been proposed in the recent years (see [1,2,3] for reviews). Although humans
can be seen as autonomous entities most of the MAS methodologies do not
consider direct human participation. In general, human role is limited to acting
behind the scenes by customising templates of the agents that participate in the
system on humans’ behalf. Moreover, existing MAS methodologies that consider
direct human participation have not developed the necessary tools to facilitate
human inclusion.

One of the few areas where direct human participation is considered is the
domain of open systems [4], which with the expansion of Internet have been
identified as the most important area of application of MAS [5]. Those are sys-
tems where participants are assumed to be heterogeneous and self interested

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 103–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

104 A. Bogdanovych et al.

and cooperative behaviour can not be expected from them. Hence, methodolo-
gies for open systems should not commit to a particular agent architecture or
programming language, and should provide mechanisms to deal with agents with
self-interested behaviours.

Two of the most prominent methodologies for open systems based on the MAS
paradigm are Gaia [6] and Electronic Institutions [7]. In Gaia the system is de-
signed as a set of organizations where agents participate playing different roles.
However, Gaia methodology only covers the specification of the system and does
not offer any technological support in regards to system execution. In Electronic
Institutions the design of the system focuses on specifying a set of institutional
rules which establish possible behaviour of the agents. The Electronic Institu-
tions methodology covers all the steps from the specification, to the deployment
and execution of the system. Furthermore, the steps of the methodology are
supported by a set of provided software tools.

An Electronic Institution can be regarded as a mediator between participants
that verifies the validity of their interactions against the set of rules, protocols
and norms specified by the systems designers. No assumptions are made about
the internal architecture of participating agents and it is only required for an
agent to be able to connect to the institution and communicate with it. Thus,
Electronic Institutions form a perfect playground for the development of human
centered Multiagent Systems and open new horizons to the research in human-
agent collaboration. Despite this fact participation of humans in Electronic In-
stitutions have not been well studied and the facilities for their integration have
not been properly developed.

In order to solve this problem we propose using 3D Virtual Worlds, which is
one of a very few technologies that provides all the necessary means for direct
human inclusion into software systems. 3D Virtual Worlds are software gener-
ated environments which follow the metaphor of architecture and emulate real
world using 3-dimensional visualisation. Humans participate in those environ-
ments represented as graphical embodied characters (avatars) and can operate
there using simple and intuitive control facilities, which are more or less similar
throughout the whole variety of the different Virtual Worlds present on the mar-
ket. We advocate that 3D Virtual Worlds technology can be successfully used
for “opening” Multiagent societies to humans.

In this paper we present a methodology for 3D Electronic Institutions, a
concept that appeared from the combination of Electronic Institutions and 3D
Virtual Worlds. This methodology focuses on the development of normative envi-
ronments inhabited by software and human agents. At this aim, the methodology
extends the Electronic Institution methodology to generate a representation of
the Electronic Institution in 3D Virtual Worlds and to define the necessary el-
ements to successfully integrate both technologies. Hence, humans participate
in the institution by controlling an avatar on the generated Virtual World. The
methodology is supplied with a set of software tools which give support to all
the stages of its development.



www.manaraa.com

A Methodology for Developing Multiagent Systems 105

Apart from opening MAS to humans the research in 3D Electronic Institutions
can also benefit the Virtual World community, which is looking for mechanisms
to incorporate social rules into Virtual Worlds in order to control and struc-
ture participants’ interactions. The design and development of Virtual Worlds
has emerged as a phenomenon shaped by a home computer user rather than by
research and development activities at universities or companies. As a result,
Virtual Worlds are more or less unregulated environments and continue to be
developed on an ad hoc basis. Despite the fact that active support of human
interactions is one of the key characteristics that set Virtual Worlds apart from
other technologies, there are no flexible facilities to control these interactions. As
the number of inhabitants of the artificial societies established in Virtual Worlds
grows, the level of immersion increases and participants become more and more
involved with the experience, the need for structuring their interactions becomes
more explicit. Lacking clear mechanisms for doing it, users try introducing some
of the convenient social rules from the real world. Doing so, however, in a system
that was built without a methodology centered on structuring users’ interactions
is a very challenging task. One of the consequences of this is that Virtual Worlds
are mostly used in computer games, where structuring the interactions of par-
ticipants is not necessarily useful and the consequences of errors in the code are
not dramatic. In order to extend the scope of Virtual Worlds technology to be
applied to a wider range of problems, exploit the benefits brought by the Virtual
Worlds and deal with their growing complexity, methodologies that regulate the
interactions of participants and improve the reliability and security issues need
to be applied. We believe that Virtual Worlds have much greater potential and
can be used for a broader spectrum of problems. New economical circumstances
and conceptual similarity with open systems create a need for Virtual Worlds
to be used in domains like E-Commerce, online travel etc. The aforementioned
problems of the Virtual Worlds can clearly be solved by applying the 3D Elec-
tronic Institutions methodology to their development.

The remainder of the paper is structured as follows. In section 2 we present
the conceptual model behind the 3D Electronic Institutions metaphor. Section
3 outlines the steps that 3D Electronic Institutions Methodology utilization re-
quires to be followed and gives the detailed overview of the technical aspects and
tools supplied with 3D Electronic Institutions. Next, in section 4 we describe
the deployment architecture, while in section 5 we summarize the contribution
and present some concluding remarks.

2 3D Electronic Institutions

Conceptually speaking, 3D Electronic Institutions are Virtual Worlds with nor-
mative regulation of interactions. More precisely, we propose to separate the
development of 3D Electronic Institutions into two independent phases: specifi-
cation of the institutional rules and design of the 3D Interaction environment.
Such separation is widely used in architecture [8], whose metaphor inspires Vir-
tual Worlds. We are convinced that having it in Virtual Worlds would also be
highly beneficial.



www.manaraa.com

106 A. Bogdanovych et al.

For the purpose of the rule specification we suggest employing the Electronic
Institutions methodology [9], which is able to ensure the validity of the speci-
fied rules and their correct execution. In contrast to Electronic Institutions and
Gaia, the normative part of a 3D Electronic Institution does not represent all
the activities that are allowed to be performed in a Virtual World. The norma-
tive part can be seen as defining which actions require institutional verification
assuming that any other action is allowed. Not every Virtual World requires
such an approach as well as not every institution requires 3D visualization. Only
systems that have a high degree of interactions and those interactions need to be
structured in order to avoid violations may need institutional intervention. And
only the institutions where 3D visualization of active components is possible and
beneficial should be visualized in Virtual Worlds.

Fig. 1. 3D Electronic Institutions Concept

For those systems that can benefit from both 3-dimensional visualization and
institutional control of the specified rules we suggest using the following concep-
tual model. A 3D Electronic Institution is visualized in terms of a 3D Virtual
World. We call this Virtual World a 3D Interaction Space. Inside the 3D In-
teraction Space an institution is represented as a building, and participants are
visualized as avatars. Once they enter the building their actions are validated
against the specified institutional rules. The institutional buildings is divided
into a set of rooms, which are separated from each other by doors. The doors
are open or closed for a participant depending on the role she/he is playing, the
institutional rules and the current execution state. Figure 1 outlines the brief
idea behind the 3D Electronic Institutions concept presented so far. Next we
describe the components of the conceptual model in more details.

3D Interaction Space. It represents the generated 3D Virtual World, and
there is no possibility for participants to move beyond it. The only way to leave



www.manaraa.com

A Methodology for Developing Multiagent Systems 107

it is by disconnecting from the Virtual World. Once someone enters it, he/she will
become embodied as an avatar and will be physically located inside. To enhance
the believability of the visualization the space is usually populated with a number
of various 3D Objects. The most typical case is that a 3D Interaction Space is
decorated as a garden, where the objects enhancing the believability are trees,
bushes, cars etc. A special type of objects within the space are the buildings. Each
of the buildings metaphorically represents an institution. Anywhere outside the
institutional building interactions among participating avatars are not regulated
and every event that happens inside this space is immediately visualized without
any prior validation.

Institutional Building. An institution is represented as a building in the
3D Interaction Space, and the interactions within the building are regulated
by the specified institutional rules. Every event that a participant requests by
pressing keys on the keyboard or operating with the mouse are first sent to
the institutional infrastructure for validation. If the institution permits event’s
execution – the corresponding action is visualized, otherwise the event is ignored.
It is also possible for the institution to provide context based explanations of the
reasons why a particular event can not be processed. The institutional building
has a single entrance door, through which the participants can enter it.

Avatars. The participants of the 3D Interaction Space are visualized as avatars.
We distinguish between the following two types of avatars: avatars for users
and avatars for the institutional employees. For the users’ avatars an initial
set of default appearances is provided, but those appearances can be changed
later. The institutional employees are usually represented by autonomous agents
that play internal roles in the corresponding Electronic Institution. They are
assumed to have similar appearance which goes inline with the dress code of the
institution they are employed with. While outside the institutions the avatars are
free to execute any possible actions and their communication is not moderated
by any of the institutions. Once they enter an institutional building they can
only execute the actions that are permitted by the corresponding institution. In
some of the rooms it is allowed by the institution to split the user into several
alteroids (avatars), to participate simultaneously in different activities. Each
time a new alteroid is created the user should decide which to choose to control
and a new autonomous agent is executed to take control over the other ones.
This functionality allows a user to employ autonomous agents for performing
some routine tasks on user’s behalf, while the user may be involved into some
other activities.

Rooms. Every institutional building consists of a set of rooms, each one repre-
senting a different activity. The number of rooms within a building and the ac-
tivity going on in each one is determined by the institution specification. Rooms
are represented as a set of rectangular boxes closed by walls from every side.
Agents can enter and leave a room by traversing one of the doors embedded in
their walls connecting it with other rooms.



www.manaraa.com

108 A. Bogdanovych et al.

Doors. The Doors are used to connect different rooms in the institutional build-
ing. The institutional rules and the execution state determine which agents de-
pending on their role can progress through the door. This is strictly controlled
by the Electronic Institution.

Map. In order to simplify the navigation of the users, every institution is sup-
plied by the map of the building. The map usually appears in the upper-right
corner of the screen as a semitransparent schematic plan. Each of the available
rooms is shown on the map and the human-like figures show every user the po-
sitions of all the alteroids a user is associated with. While moving through the
institution the positions are updated accordingly.

Backpack with obligations. While acting in an institution a user may acquire
some commitments. An example of such a commitment may be that a user
who just won the auction will not be able to directly leave the institution, but
is committed to visit the payment room before leaving. These commitments
are expressed in the specification of the underlying Electronic Institution and
are fully controlled by the system. In order to have a simple way to present
those commitments to a user we use the metaphor of a backpack used in many
computer games. The backpack is usually present in the lower right part of the
screen and a user may decide to hide it or show it back after hiding. Clicking
on the backpack will result in a user being presented with the textual list of the
acquired commitments.

Events/Actions/Messages. Although, we anticipate that the users may use
all sorts of different devices for navigating virtual worlds, in a standard case a
participant of a 3D Interaction Space is able to control the avatar and change
the state of the Virtual World by pressing keyboard buttons, moving a mouse
or clicking mouse buttons. Those physical actions executed by a user in the
real world generate events inside the Virtual World, which are then visualized
as actions executed within the 3D Interaction Space. The events that a user
is trying to execute inside an institutional building are not directly visualized.
Before visualization every event is transformed into a message understandable by
the institution and send to the institutional infrastructure for validation. Only
if the given message is consistent with the current state of the institution and
the institutional rules, the action is performed and visualised.

3 3D Electronic Institutions Methodology

In the previous section we presented the metaphor of 3D Electronic Institutions.
Here we describe the methodology that facilitates their development and show
how this new methodology embeds the Electronic Institutions methodology. We
want to remark that this methodology covers the development of a single insti-
tution. In order to have an Interaction Space populated by several institutions,
the methodology has to be applied to each one of them.



www.manaraa.com

A Methodology for Developing Multiagent Systems 109

���������	�
�

�
��	

�������	�
�

���
	�	�
�

��	���	�
�

��

����������	���

������

���

��	
��	��

�����	�
�

��

���

Fig. 2. Methodology steps

Applying 3D Electronic Institutions methodology requires 5 steps to be ac-
complished:

1. Specification of an Electronic Institution using ISLANDER [7].
2. Verification of the specification.
3. Automatic Generation of the corresponding 3D environment (if needed).
4. Annotation of the Electronic Institution specification with components of

the 3D Virtual World.
5. Integrating the 3D Virtual World into the institutional infrastructure.

Figure 2 presents the overview of each of the steps and their sequence. The
detailed explanation of each of them follows next.

Step 1 – Specification. The specification step is the same as in the Electronic
Institutions methodology [7]. It establishes the regulations that govern the be-
haviour of the participants. This process is supported by ISLANDER which
permits to specify most of the components graphically, hiding the details of the
formal specification language and making the specification task transparent. The
institutional regulations are established by three types of conventions.

Conventions on language, the Dialogical Framework. It defines a common on-
tology and communication language to allow humans with different cultural
backgrounds, as well as, agents to exchange knowledge. This ontology and lan-
guage for humans will be further transformed into actions that are allowed to
be executed in the Virtual World. Those actions are connected to 3D models in
the environment, the affordances of which will help in eliminating the cultural
barrier. Due to the further provided translation of the communication language



www.manaraa.com

110 A. Bogdanovych et al.

Fig. 3. Trading Institution Performative Structure

into actions and vice-versa, the agents will be able to interact with humans and
understand their actions. The dialogical framework also fixes the organizational
structure of the society, that is, which roles can participants play.

Conventions on activities, the Performative Structure. This dimension deter-
mines in which types of dialogues users can engage. For each different activity,
interactions among participants are articulated through group meetings, called
scenes, which follow well-defined interaction protocols. The protocol of each scene
is specified by a graph where the states represent the different interaction states
and arcs are labeled with messages of the communication language or time-
outs. Participants in a scene can change over time and at this aim, a set of
access and exit states per role are defined. Finally, role populations are spec-
ified by establishing the minimum and maximum number of participants that
must or can play each role. More complex activities are specified by establishing
connections among scenes. The resulting, network of scenes, the Performative
Structure, defines how agents can legally move among scenes depending on their
role. This transit of participants between scenes is regulated by special (simple)
scenes called transitions, which allow expressing synchronization, parallelization
and choice points. In their transit among scenes users are allowed to change their
role. The Performative Structure contains two special scenes, the initial and final
scene, which does not model any activity and must be regarded as the institution
entrance and exit. Participants entering the institution are initially placed in the
initial scene, while reaching the final scene means leaving the institution.

Conventions on behavior, the Norms. Norms determine the consequences of
user actions. These consequences are modeled as commitments that participants
acquire as a consequence of their actions and have to fulfill later on. These
commitments may restrict future activities of the users.

In order to illustrate the different steps of the methodology, we use a very
simple Trading Institution. This institution can be enacted by the agents playing
the receptionist, auctioneer and buyer roles. Figure 3 shows the performative
structure of the Trading Institution, where rectangles represent different scenes
and triangular shapes are transitions. Apart of the root and exit scenes which
just represent the entrance and exit, the institution contains the Registration,
Meeting and Trading Room scenes. In the Registration scene buyers register by



www.manaraa.com

A Methodology for Developing Multiagent Systems 111

communicating their login and password to an agent playing the receptionist
role. In the Meeting scene buyers can meet and freely interact, while in the
Trading Room buyers can acquire products auctioned by an agent playing the
auctioneer role. The arcs connecting scenes and transitions are labeled with
the roles that can progress through them. Notice that buyer agents are required
to go to the Registration scene before moving to the meeting room to interact
with other buyers. From the Meeting scene, they can proceed to the Trading
Room to participate in the auctions. Receptionist can only go to the Registration
scene, while agents playing the auctioneer role can only access the Auction Room
from the root scene.

Step 2 – Verification. One of the advantages of the formal nature of the
3D Electronic Institutions methodology is that the specification produced on
the previous step can be automatically verified for correctness by ISLANDER.
The tool verifies the scene protocols, the role flow among the different scenes
and the correctness of norms. This verification starts with the validation of the
correctness of the protocol defined by each scene. This includes checking that
for each state there is a path from the initial state to a final state that passes
through the current state, and that the messages of the arcs are correct with
respect to the communication language. At the Performative Structure level it
is verified that agents will not get blocked at any scene or transition. Thus, it is
checked that from each scene and transition users have always a path to follow,
that each of them is reachable from the initial scene and that from each scene and
transition exists a path to the final scene that will allow participants to leave the
institution. Finally, ISLANDER checks that norms are correctly specified and
that participants can fulfil their commitments. As commitments are expressed
as actions that users have to carry out in the future, it is verified that those
actions can be performed by agents.

The verification permits to detect errors in the specification before starting
the design and development of the 3D visualization. If such errors are found, the
developers should go back to step 1 to correct them. If the specification contains
no errors, there are two options. If the 3D Visualization of the environment is
already created (reuse of the existing design) then the developers may skip the
next step and continue with Step 4. Otherwise, the generation step, Step 3,
should be executed.

Step 3 – Generation of the visualization. The institutional specification
does not only define the rules of the interactions, but also helps to understand
which visualization facilities are required for participants to operate in the insti-
tution. Most elements of the specification have conceptual similarities with basic
concepts of 3D Virtual Worlds, which makes it possible to create an automatic
mapping between those. In our metaphor scenes and transitions, correspond to
rooms, connections (arcs) in the Performative Structure graph become doors,
and the number of participants allowed in a scene determines the size of a room.
The performative structure corresponds to the map of the institution and the



www.manaraa.com

112 A. Bogdanovych et al.

Fig. 4. Trading Institution floor plan

backpack with obligations is a visual way to communicate the normative obliga-
tions to the users.

Having this mapping serves two conceptual purposes: explaining the Elec-
tronic Institutions metaphor in terms of Virtual Worlds using the concepts fa-
miliar to most of the humans and explaining the Virtual Worlds in terms of the
institutional specification of the underlying processes. Practically it helps to gen-
erate a part of the visualization in a fully automatic way (see [10] for details). The
generation can function in two different modes: Euclidean and non-Euclidean.
In the first case the rooms on the generated floor plan are positioned so, that
each scene and transition connected in the Performative Structure are physically
placed next to each other and there is a door between them. In the non-Euclidean
case the rooms may be located anywhere and are not necessarily involved in any
sort of spatial relationship. The movement between connected rooms in the non-
Euclidean approach will then be conducted using teleportation1.

Next, all the rooms are resized to be able to include the maximum number of
participants allowed in the corresponding scene. Another outcome of this step is
the schematic plan (map) of the institution.

Figure 4 depicts the automatically generated floor plan for the Trading In-
stitution. Notice that there is a room for each scene and transition of the per-
formative structure shown in Figure 3, except for the output scene (the output
scene does not model any interaction and it only represents the exit point of the
institution). This is expressed in the figure by the doors (represented by thin
lines) in the registration and trading room that are not connected to any other
room. Once an agent traverses one of these doors – the agent leaves the institu-
tional building and appears inside the uncontrolled part of the 3D Interactions

1 The process of moving objects from one place to another instantaneously, without
passing through the intervening space.



www.manaraa.com

A Methodology for Developing Multiagent Systems 113

Fig. 5. Annotating the rooms with Atmokits

Space. Transitions are the rooms with names T i, where i ranges from 1 to 4.
The connections among rooms are established through doors, positions of which
are determined by the arcs connecting scenes and transitions in the performative
structure of the Trading Institution. Although two rooms can be connected by
a door, only the agents playing the roles that label the corresponding arc will
be allowed to progress through the corresponding door.

Step 4 – Annotation. Although a part of the visualization of a 3D Electronic
Institution can be automatically generated there is usually not enough informa-
tion present in the specification to produce an appealing visualization. To enrich
the generated visualization we use the Annotation Editor tool. This tool helps to
change the textures, colors and add additional objects inside each of the rooms.
In the current implementation we use the Atmokits software2 for this purpose.
It is supplied with a set of standard objects and textures that can be used to
enrich the design of the rooms. Figure 5 shows the interface of Atmokits. Left
side of the figure shows the map of the institution and the right part displays
the 3-dimensional representation of one of the rooms with an avatar inside. The
bottom part outlines a set of objects that can be inserted and the control buttons
that are used for precise object positioning.

After the annotation step the user can return to step 1, if for any reason
he/she wants to modify the specification, or move to step 5.

Step 5 – Integration. On the integration step the execution state related com-
ponents are specified. This includes the creation of the set of scripts that control
the modification of the states of the 3D Virtual Worlds and mapping of those
scripts to the messages, which change the state of the Electronic Institution.
Firstly, the scripts that correspond to the messages from the agent/institution
protocol need to be defined. These include entering scene, leaving scene, enter-
ing transition, leaving transition etc. Next, the scripts that correspond to the

2 http://www.atmokits.com



www.manaraa.com

114 A. Bogdanovych et al.

specific messages that are defined in the ontology on the specification step must
be created. If there is a need to map the data types in the ontology to 3D
objects in the Virtual World it should also be done on this step. At the end,
the correspondences between the messages and scripts (actions) are created by
filling in the Action/Message table. The Action-Message table for the trading
institution is presented in Table 1. The table specifies, for example, that when
an avatar collides with a door this action is mapped to an ExitScene message,
while the action of raising a hand is mapped to a Bid message. Furthermore,
the table is also used to map the messages of the institutional infrastructure
to actions in the Virtual World that change the visualization. For instance, if a
EnteredAgentInstitution message is received a new avatar will be shown in the
initial scene of the institution.

Making the integration a separate step of the methodology stimulates the
development of the scripts in the form of design patters, that are generic enough
to be reused in other systems.

After accomplishing this step the generated 3D Virtual World is ready to be
visualized and the 3D Electronic Institution infrastructure will be executed to
take care of the validity of interactions between participants, verify the permis-
sions of participants to access different scenes and will make sure that all the
institutional norms and obligations are imposed.

Table 1. Action-Message Table

Action Message

addNewAvatar EnteredAgentInstitution

doorCollideFromScene ExitScene

roomEnter MoveToScenes

doorCollideFromTransition ExitTransition

transitionEnter MoveToTransition

raiseHand Bid

removeAvatar ExitedAgentInstitution

4 Deployment

For deployment of 3D Electronic Institutions created by the proposed method-
ology, we use a 3-layered infrastructure presented in Figure 6.

First layer is the Electronic Institution Layer. It uses the AMELI system [7]
for enforcing the institutional rules established on the specification step. AMELI
keeps the execution state of the institution and uses it along with the specifica-
tion to guarantee that participants’ actions do not violate any of the institutional
constraints.

Second layer is the Communication Layer. Its task is to causally connect [11]
the institutional infrastructure with the visualization system transforming the
actions of the visualization system into the messages, understandable by the
institutional infrastructure and the other way around. This causal connection



www.manaraa.com

A Methodology for Developing Multiagent Systems 115

Fig. 6. Runtime Architecture

is done via the Causal Connection Server, which uses the Action-Message table
created on the integration step. The causal connection is happening in the follow-
ing way: an action executed in the 3D Virtual World (that requires institutional
verification) results in a change of the institutional state in the AMELI layer, as
well as every change of the institutional state is reflected onto the 3D Virtual
World and changes its state. The Communication layer conceptually and tech-
nologically connects two metaphors: Electronic Institutions and Virtual Worlds
and we see it as one of our major scientific contributions.

The third layer is called Visualization Layer. It is used to visualize the 3D
Virtual World for the users. Currently, we are employing the Adobe Atmosphere3

technology for this task, however, due to the fact that it was discontinued we
are making a transition to Second Life4.

A clear separation of the runtime architecture into three different layers has
a number of advantages:

1. The interactions inside the 3D Virtual World become structured, secure and
predictable, as everything that needs control is verified by AMELI and will
happen as specified.

2. The Visualization Layer can be easily replaced (i.e. when a more advanced
visualization platform appears on the market) with minimal changes in the
rest of the system.

3. The changes in the Electronic Institution Layer will be automatically re-
flected onto the Visualization layer or will require minimal manual adjust-
ment.

3 http://adobe.com/products/atmosphere
4 http://secondlife.com



www.manaraa.com

116 A. Bogdanovych et al.

4. A number of different visualization platforms (possibly implemented via dif-
ferent technologies) can be simultaneously connected to the Causal Connec-
tion Server and share the same institution.

5. Some participants (i.e. software agents) can bypass the 3D Virtual World
and directly connect to the institution via the Electronic Institutional layer,
while other participants (humans) will be able to observe their presence and
actions in the 3D Virtual World.

5 Conclusion

In this paper we presented the 3D Electronic Institutions methodology, which
supports human integration into MAS-mediated environments and provides all
the necessary technological support for them to actively participate and interact
with other humans or autonomous agents. This methodology is supplied with a
set of tools that facilitate the design, development and execution of such environ-
ments. We would like to stress that, to our knowledge, 3D Electronic Institutions
is the first methodology that is specifically concerned with the developments of
Virtual Worlds with normative regulations of interactions. Its formal nature has
a number of advantages. Firstly, it forces the designer to follow a structured and
formal approach, having to analyse the system in detail before implementing
it. This permits designers to detect the critical points and possible problems at
an early stage. Furthermore, the methodology clearly distinguishes between the
design of the institutional rules and the design of its visualization in Virtual
Worlds, which proved to be an efficient way to develop real world designs. An-
other advantage of using this methodology is that the supplied tools make the
development faster, helping to achieve some tasks automatically. Moreover, due
to the distributed architecture possible updates of the system can be accommo-
dated in an easy way. Notice, that the development process is independent of the
particular Virtual Worlds technology used for the visualization of the system.
This in combination with the execution infrastructure permits a quick and easy
portability of the system to new visualization platforms.

The proposed architecture also supports an efficient collaboration between
humans and agents. There is always a software agent assigned to every human
participating in the institution and either of them can control the avatar. When
the human is driving the avatar the agent observes and records the actions of
the principal. This information is used later on, when the agent is in control
of the avatar for achieving its goals and expressing believable human-like be-
haviour. The immersive nature of 3D Virtual Worlds creates better possibilities
to observe human behaviour without a need to overcome the embodiment dis-
similarities, while institution control of the interactions helps the agent to reduce
the number of possible behaviours and hence, to learn faster. Furthermore, when
the agent is driving the avatar the human is supplied with convenient interface
to observe its actions and intervene when necessary. In this way the behaviour
of the agent acting on user’s behalf can be easily controlled, increasing the trust
and confidence of the humans in the agent.



www.manaraa.com

A Methodology for Developing Multiagent Systems 117

Acknowledgements

The research reported in this paper is partially supported by the ARC Discovery
ProjectDP0451692 “TheEvolutionofBusinessNetworks inVirtualMarketplaces”
and the Spanish projects “Autonomic Electronic Institutions” (TIN2006-15662-
C02-01) and “Agreement Technologies” (CONSOLIDER CSD2007-0022, INGE-
NIO 2010).

References

1. Iglesias, C., Garijo, M., González, J.: A Survey of Agent-Oriented Methodologies.
In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555,
pp. 317–330. Springer, Heidelberg (1999)

2. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of
the Art. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
pp. 55–82. Springer, Heidelberg (2001)

3. Gómez-Sanz, J., Pavón, J.: Methodologies for developing multi-agent systems.
Journal of Universal Computer Science 10(4), 359–374 (2004)

4. Hewitt, C.: Offices are open systems. ACM Transactions on Office Information
Systems 4(3), 271–287 (1986)

5. Wooldridge, M., Jennings, N.R., Kinny, D.: A methodology for agent-oriented anal-
ysis and design. In: Proceedings of the third annual conference on Autonomous
Agents (AGENTS 1999), pp. 69–76. ACM Press, New York (1999)

6. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
gaia methodology. ACM Transactions on Software Engineering Methodology 12(3),
317–370 (2003)

7. Arcos, J.L., Esteva, M., Noriega, P., Rodriguez-Aguilar, J.A., Sierra, C.: An In-
tegrated Developing Environment for Electronic Institutions. In: Agent Related
Platforms, Frameworks, Systems, Applications, and Tools. Whitestein Book Se-
ries, Springer, Heidelberg (2005)

8. Maher, M., Simoff, S., Mitchell, J.: Formalizing building requirements using an
activity/space model. Automation in Construction 6, 77–95 (1997)

9. Esteva, M.: Electronic Institutions: From Specification to Development. PhD
thesis, Institut d’Investigació en Intel.ligència Artificial (IIIA), Spain (2003)

10. Bogdanovych, A., Drago, S.: Euclidean Representation of 3D electronic institu-
tions: Automatic Generation. In: Proceedings of the 8th International Working
Conference on Advanced Visual Interfaces (AVI 2006), pp. 449–452 (2006)

11. Maes, P., Nardi, D.: Meta-Level Architectures and Reflection. Elsevier Science Inc.,
New York (1988)



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process:
A Jadex Implementation

Yudistira Asnar, Paolo Giorgini, and Nicola Zannone

Department of Information and Communication Technology
University of Trento, Italy

{yudis.asnar,paolo.giorgini,zannone}@dit.unitn.it

Abstract. Autonomous agents and multi-agent systems have been proved to be
useful in several safety-critical applications. However, in current agent architec-
tures (particularly BDI architectures) the deliberation process does not include
any form of risk analysis. In this paper, we propose guidelines to implement Tro-
pos Goal-Risk reasoning. Our proposal aims at introducing risk reasoning in the
deliberation process of a BDI agent so that the overall set of possible plans is
evaluated with respect to risk. When the level of risk results too high, agents can
consider and introduce additional plans, called treatments, that produce an overall
reduction of the risk. Side effects of treatments are also considered as part of the
model. To make the discussion more concrete, we illustrate the proposal with a
case study on the Unmanned Aerial Vehicle agent.

1 Introduction

Agent technology is becoming more and more an emergent alternative to build safety-
critical systems [1, 2]. Humans are replaced by autonomous agents in high risk situa-
tions or safety-critical missions, such as reconnaissance and battle-combat. However,
developing autonomous agents for such tasks require to introduce and consider risk and
related problems within the agent’s deliberation process.

Many models dealing with agent’s mental states have been proposed in literature
[3,4,5]. Most of them describe agent’s mental states in terms of Belief, Desire, and Inten-
tion (the BDI model). The BDI model has been initially introduced by Bratman [6] and
then refined by Rao and Georgeff [7,4] for real implementation in agent based systems,
such as Procedural Reasoning System (PRS) and distributed Multi Agent Reasoning
System (dMARS). Currently, agent tools and frameworks, such as Jack [8], Jadex [9],
and Jason [10], use effectively the BDI model in their implementations. Here the de-
liberation process of an agent is supported by a meta-level reasoning, where the most
appropriate plan for achieving a given goal is selected on the basis of specific criteria
such as priority and beliefs. Unfortunately, these implementations do not consider un-
certain events and, in particular, risks (i.e., uncertain events with negative impacts [11])
as integral part of the meta-level reasoning. On the other hand, several approaches have
been proposed in literature to reason about uncertainty [12,13], but often their complex-
ity made almost impossible the implementation in real agent-based applications [12,14].

In this paper, we adopt and adapt Tropos Goal-Risk (GR) Framework [15] within
the deliberation process of a BDI agent. The GR framework extends the Tropos Goal

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 118–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation 119

Model [16] adopting the idea of the three layers analysis introduced by Feather et al. [17]
in their Defect Detection and Prevention (DDP) framework. The GR framework con-
sists of three layers: goal, event/risk, and treatment. These three layers are used to reason
about uncertain events that obstruct goals and the plans that can be used to achieve them,
and evaluate the effectiveness of treatments. In particular, the GR framework provides
an agent with the capability to choose a strategy (i.e., a combination of plans and treat-
ments) to pursue a goal, whose risk and cost are acceptable by the agent. In this paper,
we propose an implementation of this framework in Jadex [9]. The idea is to encode the
GR framework into the Jadex platform so that the deliberation process of an agent takes
into account risks and associated costs.

The paper is structured as follows. Section 2 provides a brief description of the Un-
manned Aerial Vehicle agent that will be used as an example to explain the whole
framework. Section 3 explains the Tropos Goal-Risk framework, and Section 4 details
its implementation in Jadex. Finally, Section 5 discusses related work and Section 6
gives final remarks.

2 Unmanned Aerial Vehicle

An Unmanned Aerial Vehicle (UAV) is an aircraft without pilot, that either is controlled
remotely or flies autonomously. UAVs are typically used in a number of critical mis-
sions, such as decoy, reconnaissance, combat, and even for research and civil purposes.

In the early time, UAVs were called drones because they were not more than aircraft
remotely controlled by human. Recently, several efforts have been made to apply intel-
ligent agents to control aircraft [18, 19, 20]. Attempts to use intelligent agents in man-
aging UAVs are addressed to avoid the risk of human life loss. In this setting, agents
can respond to event occurrences autonomously without waiting for instructions from
the ground control. This capability results to be essential in critical and dangerous mis-
sions (e.g., reconnaissance, decoy, and combat) where the response time has to be as
short as possible. For instance, if a drone understands that it has been detected by the
enemy, it informs the ground control about the danger. However, it will still proceed
with the mission according to the previous plan until it receives new instructions from
the ground control. It is possible that these new instructions are sent to the UAV too late
for ensuring the success of the mission. The ambitious objective of the agent paradigm
is to provide UAV with facilities to react autonomously and so to take countermeasures
in the appropriate time.

There are still open problems for completely replacing human with agents. For in-
stance, a human pilot can learn from past experience so that it can adopt adequate
measures when a new occurrence of events is detected. This paper aims at improving
software agents with such a capability.

3 Tropos Goal-Risk Model

Tropos is a software engineering methodology that adopts the concept of agent and its
related mentalistic notions (e.g., goal, plan, and resource) along the whole software de-
velopment process [21]. The Tropos Goal-Risk (GR) framework [15, 22] enhances the



www.manaraa.com

120 Y. Asnar, P. Giorgini, and N. Zannone

Tropos goal model by extending the conceptual model with constructs and relations spe-
cific to risk analysis. Basically, a GR model is represented as a graph 〈N , R 〉, where
N are nodes and R are relations. N is comprised of goals, plans, and events, and
R consists of decomposition (AND/OR), contribution, and means-end relations. Goals
are defined as strategic interests that an agent may have, while an event is an uncertain
circumstance/state of affair that may affect (positively or negatively) the achievement
of a goal. Typically, events are out of agents’ control. A plan is a course of actions,
which can be used to achieve a goal or to reduce/treat/mitigate the effects of an event.
To distinguish between the plans used to achieve a goal (hereafter plan) and the ones
for mitigating the risk, we call mitigating plans treatments.

Goals, plans, treatments, and events are characterized by two attributes: satisfac-
tion (SAT) and denial (DEN). SAT represents the evidence that an agent has about the
achievement of a goal, the execution of a plan, or the occurrence of an event. DEN rep-
resents the evidence about the failure in fulfilling a goal, executing a task, or the occur-
rence of an event. Though they have similar intuition with probability theory, SAT and
DEN are not related and cannot be derived one from the other. The values of attributes
are qualitatively represented as {F}ull, {P}artial, and {N}one, with intended meaning
F > P > N . For instance, Sat(G) = P means that there is (at least) partial evidence
that goal G will be achieved, whereas Den(G) = N means that there is no evidence
about the failure in achieving goal G. For plans and treatments, these attributes are used
to calculated the success-rate that represents how likely a plan or a treatment will be
successfully executed. Besides success-rate, plans and treatments has also attribute cost
that specifies how many efforts are needed to execute them. In the UAV scenario, for
instance, it may refer to the power consumed to execute a plan. SAT and DEN are also
used to compute the likelihood of an event, following the idea of the Theory of Evi-
dence proposed by Dempster and Shaffer [23]. In a GR model 〈N , R 〉, relations in R
are represented as (N1, . . . , Nn)

r�−→ N, where r is the type of the relation, N1, . . . , Nn

are called source nodes and N is the target node. The formal framework adopts the
axioms for the semantic of relations from [24]. This framework is presented in [22] to-
gether with the rules used to propagate evidence from source nodes to the target node.

A GR model is composed of three different layers: goal layer, event layer, and treat-
ment layer. The goal layer models the strategic interests of an agent (i.e., goals) along
with the plans to obtain them. For instance, Fig. 1 shows the GR model of the UAV
agent (goals are represented as ovals and plans as hexagonal). The UAV agent has as
main goal to investigate the enemy area(G1) which is AND-decomposed into de-
fine the flight airways to the target(G4), fly to the target(G5) based on the defined
airways, identify the target(G6)whether it is a relevant target or just a decoy, and take
the picture of target(G7). According to the rules, which is adopted from [24], the SAT
value for G1 is calculated as the minimum of all SAT values of subgoals G4, G5, G6,
and G7. Inversely, the DEN value for a target goal is calculated as the maximum of all
DEN values of its subgoals. Differently, for OR-decomposition the achievement of a
subgoal implies the achievement of its root goal. For instance, to achieve goal take
the picture of target(G7), the UAV agent can use take-store schema(G8) or use
take-transmit schema(G9). The refinement process terminates when all leaf goals are
tangible, i.e., for each leaf goal there is at least a plan that can be used to achieve it.



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation 121

Fig. 1. Goal-Risk model of the UAV Agent

For instance, to achieve goal fly to the target(G5), the UAV can adopt two alternative
plans: fly at high altitude(P3) or fly at low altitude(P4). These plans are connected
to their end G5 through means-end relations (indicated as P3 �−→ G5 and P4 �−→ G5,
respectively). Each plan may further be refined using decomposition relations.

Additionally, there are situations where the achievement of a goal can contribute
positively or negatively (denoted by +,++,−,−−) to the achievement of other goals.
In our example, goal use take-transmit schema(G9) requires more energy and so it
negatively contributes (−S) to the satisfaction of goal reduce the energy consump-
tion (G2) (indicated as G9

−S�−→ G2). Essentially, the contribution −S states that the
SAT value of the source goal is propagated to the DEN value of the target goal with the
maximum value Partial . −−S has a similar semantics but they can contribute till Full.
Negative contribution relations for denial (−−D and −D) have dual propagation rules.
Similar considerations can be applied to positive contribution. For instance, the denial
of goal identify the target(G6) contribute positively (+D) to the denial of goal take
the picture of target (G7) since the UAV has to decide whether or not the target is
relevant before taking the picture. Similar rules apply for positive contribution relations



www.manaraa.com

122 Y. Asnar, P. Giorgini, and N. Zannone

for satisfaction (++S and +S). Finally, there could be situations where both +S and

+D are required for the same goals. In this case, we simply use Gx
+�−→ Gy which

means that both Gx
+S�−→ Gy and Gx

+D�−→ Gy hold.
In the event layer uncertain events (depicted as pentagons) are analyzed along their

influence to the goal layer using contribution relations (Fig. 1). Notice that the occur-
rence of events can affect the fulfillment of goals and the execution of plans, but their
absence do not affect them. This is because the occurrence of an event (e.g., heavy
storm (E7)) delivers negative evidence to the goal layer (especially the goal reduce
energy consumption (G2)), while the absence of the event does not deliver any ev-
idence neither positive nor negative. Based on this observation, we assume that con-
tribution relations from the event layer to other layers propagate only SAT evidences
(denoted by ++S, +S, −−S , and −S). Though in this paper we are particularly in-
terested to the negative effect of event (risk), the GR model also handles events with
positive impacts over goals.1 For instance, the event heavy storm (E7) can cause an
increment of the fuel consumption, that negatively contributes (−) to the achievement
of goal reduce energy consumption (G2). At the same time, E7 reduces the likeli-
hood of being detected by land-patrols (E8). As in the Probabilistic Risk Analysis
(PRA) [25], we characterize an event with two attributes: likelihood of its occurrence
and severity once it occurs. As mention before, likelihood is realized as SAT and DEN
values representing the evidence that support or prevent an event to be occurred. Sever-
ity is represented as the sign of a contribution relation (e.g., +,++,−,−−). As in Fault
Tree Analysis [26], an event can be analyzed using decomposition relations. The formal
semantics of these relations are the same with the one in the goal layer.

Typically, events are out of an agent’s control and the only thing that the agent can
do is to try mitigating their impacts. An agent can adopt specific treatments to either
reduce the likelihood or reduce the severity of risk. In the treatment layer specific
plans are introduced and related to the goal and event layer. As shown in Fig. 1, goal
apply stealth mode (T4) technology reduces the likelihood of risk being detected

by enemy’s radar (E4). This relation is depicted as T4
−�−→ E4. In case of storm,

the UAV agent can hibernate the system (T3) to reduce the negative impacts of the
event E7 towards the achievement of goal reduce the energy consumption (G2).
This relation is depicted as a line ending with a black circle in Fig. 1 and represented

as T3
−−�−→ (E7

−−�−→ G2). We call this relation alleviation relation, but for sake of
simplicity, we do not detail it in this paper. The level of risk effect reduction from a
treatment depends on the success-rate of the treatment and the sign of the relation to the
event layer.

The overall GR model represents exactly what an agent can do to achieve its goals
(i.e., applying the right plans) and to mitigate associated risks (i.e., adopting neces-
sary treatments). Different strategies (i.e., combinations of plans and treatments) can
be adopted by the agent to achieve its goals. However, not all possible strategies (i.e.,
combinations of plans and treatments) may be acceptable by the agent. It wants a strat-
egy whose risk is acceptable and cost (i.e., power consumption) is affordable. Here,
the risk of a strategy is defined in terms of SAT and DEN values of the top goals and

1 Notice that a negative event for an agent, may be positive for another agent.



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation 123

its cost is defined as the sum of the cost required to execute its plans and treatments.
To choose an appropriate strategies, the agent needs to reason on its GR model. To this
end, we have employed a risk analysis process (or risk reasoning) [22] that uses forward
reasoning [24] on the likelihood of events and the success-rate of plans and treatments.
Suppose that an UAV agent must be operated within the maximum risk level (called
RISK) and the affordable cost (called COST). The risk analysis process will synthesize
a strategy on the basis of GR model 〈N , R 〉 such that the agent can satisfies its top
goals (e.g., G1 , G2 , and G3 ), the risk is below RISK, and the total cost is below COST.

Initially, the agent generates all possible solutions (i.e., sets of leaf subgoals) for
achieving top goals in 〈N , R 〉. For instance, the UAV agent has top goal G1 that can
be fulfilled by fulfilling two sets of input-goals, {G4, G5, G6, G8} or {G4, G5, G6, G9}
(Fig. 1). To find all possible combinations of input-goals that satisfy top goals, we have
adopted the solution proposed in [27], where Tropos goal models are encoded into
satisfiability formulas. For a given set of input-goals, the agent finds all possible set-
of-plans that are means for the input-goals (i.e., a plan that is connected by means-end
relation to a goal). For instance, {P1, P3, P6, P11, P12} is one of the possible set-of-
plans that satisfies the top goal G1 (Fig. 1).

For each set-of-plans whose cost is affordable (i.e., less than COST), the agent con-
tinues to assess the risk. If the risk is also acceptable (i.e., less than RISK), the set-of-
plans is adopted as strategy by the agent. Otherwise, if the risk is unacceptable (i.e.,
higher than RISK), the agent must find applicable treatments to mitigate the risk. For
instance, the set-of-treatments {T4, T5} is one of the possible measures that the UAV
can adopt to reduce the risk to be detected by the enemy. Before adding the set-of-
treatments as part of the strategy, the agent verifies whether the cost and risk are still
affordable. If they are acceptable, the set-of-treatment and the set-of plans are consid-
ered as the strategy of the agent; otherwise, the agent restarts the process by analyzing
other set-of-plans.

At the end, the risk assessment process returns a strategy that can be used to fulfill
top goals and whose level of risk and total cost are within established thresholds. In this
paper, we assume that the reasoning process always finds a strategy.

4 Framework Realization

Several agent infrastructures based on BDI concepts, such as Jack [8], Jadex [9], and
Jason [10], have been proposed in the last years. Typically, agent platforms follow the
Reactive Reasoning and Planning (PRS) computational model [28] to implement their
reasoning engine. PRS-like systems are event-based where events2 are used to denote
incoming messages, a new goal to be processed, or a change in the state of an exist-
ing goal. Once an event is generated, the agent dispatches the event to the deliberation
mechanism (called meta-level reasoning) to choose the most appropriate plan to handle
it. In some PRS-system, like Jack and Jason, goals are represented as special type of
event, called goal-event. Thus, agents implemented in Jack or Jason platform do not
know the current pursuing goals. They execute the plan only as a response to the occur-
rence of an event.

2 The notion of event supported by agent platforms is a different from the one in Tropos.



www.manaraa.com

124 Y. Asnar, P. Giorgini, and N. Zannone

On the contrary, the notion of goal plays a key role in the Jadex platform. This has
spurred us to choose Jadex as platform to implement the GR framework. Jadex requires
to specify agents’ goals explicitly. These goals must be related to the plans that pro-
vide means to achieve them. Jadex represents agents’ beliefs as Java objects and stores
them in the beliefbase, that is, the database of agents’ beliefs. Moreover, Jadex allows
one to specify the plan that has to be executed when a belief is changed. Those BDI
descriptions are represented in an XML file, called Agent Definition File (ADF) by a
Jadex agent. The Jadex reasoning engine starts the deliberation process by considering
the goals requested by the agent. To this end, it adopts the goals stored in the database
that contains all adopted goals by the agent, called the agent’s goalbase. To distinguish
between just adopted and actively pursued goals, Jadex distinguishes a goal into three
states: option, active, and suspended. When a goal is adopted, it becomes an option
goal in the agent’s goalbase. Once the agent pursues the goal, it becomes active and a
goal-event is triggered. The event is then dispatched to the meta-level reasoner in order
to find the most appropriate plan to achieve the goal.

The process to implement the GR models of the UAV agent into the Jadex platform
starts by defining its beliefs (Fig. 2(a)). The agent’s beliefs include: the thresholds of
risk level and cost (line 2-7) that are acceptable for the UAV agent; the current cost and
risk level of adopted strategies are encoded in (line 8-10) and (line 11-13) respectively.
The success rate for plans, the likelihood of events, and the success rate for treatments,
which are depicted as Goal-Risk labels, are also included as the beliefs (line 17-32). We
also provide the agent with facilities for risk analysis by representing the GR model as a
Java object and storing it as a belief (line 14-16). We also specify assess risk plan (line
2-9 in Fig. 2(b)) in case there is a change in these belief values. Essentially, assess risk
calculates the risk level and cost of adopted strategy (i.e., plans and treatments) using a
Jadex implementation of Forward Reasoning [24].

To contain the risk level and cost, the UAV agent needs to introduce two additional
goals: maintain risks (line 2-9 in Fig. 2(c)) below the risk threshold and maintain costs
below the cost threshold. If such goals are denied, plan re-planning (line 10-15 in
Fig. 2(b)) is executed to recover the desired conditions. Essentially, re-planning is the
Jadex implementation of Risk Reasoning and is used to synthesize a strategy on the basis
of the current beliefs. As mentioned previously, we assume that there is always a strategy
for each re-planning attempt.

We also need to represent goals, plans, and treatments of the GR model in the ADF,
so that the Jadex implementation of the agent behaves accordingly to the GR model at
execution time. Goals are declared in the ADF goal-base, while plans and treatments
are depicted as plans section of ADF. This transformation starts by declaring all goals,
plans, and treatments occurring in the GR model as XML entries in the ADF (Fig. 2(c)
and Fig. 2(b)). Additional Jadex-goals and Jadex-plans may be introduced to mimic the
behaviors supported by the GR framework, that are missing in the Jadex platform. A
Jadex-plan can introduce a new goal, rather than only representing a sequence of actions
(as denoted in Jadex-Legend Fig. 3).

Goals, plans and treatments in Tropos can be AND/OR-decomposed, while in Jadex
a goal can only be AND-decomposed. Indeed, Tropos decompositions represent the
knowledge of agents about the relations between goals. On the other hand, Jadex



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation 125

(a) Beliefs (b) Plans

(c) Goals

Fig. 2. UAV agent description in Jadex-ADF

introduces subgoals as a result of a plan. For instance, G1 is AND decomposed into
G6 and G7 (left-side in Fig. 3). To realize this behavior during execution of a Jadex
agent (right-side in Fig. 3), we need to introduce an additional plan P-G01. This plan



www.manaraa.com

126 Y. Asnar, P. Giorgini, and N. Zannone

P07

G-P11G-P12

P11b

G-P11 G-T01

P11a

G-P11

P-G08

G08

P-G09

G09

P08

G-P12 G-P13 G-P14

G01

P-G01

G06 G07….

P12

Action
P13

Action

P14

Action

P-G01+Treat

G06 G07…. Treat.

P11

Action
T01

Action

…...

Goal Action

Jadex - Legend

Plan

Goal Action

………

………

………

Fig. 3. Goal-Risk model to Jadex

introduces (and later dispatches) subgoals G6 and G7, as depicted in the right-side of
Fig. 3. P-G01 is means to achieveG1 (depicted by arrow line), and the ADF description
is shown in Fig. 2(b) (line 16-21). However, both Tropos and Jadex require the fulfill-
ment of all AND-subgoals for having evidence about the fulfillment of upper-level goal.
AND-decompositions of plans/treatments have a similar intuition, with introducing ad-
ditional goals to activate the subplans. For instance, plan P8 will introduce additional
goals (i.e., G-P12, G-P13, and G-P14) that later activate subplans P12, P13, and P14.

To mimic goal OR-decompositions, we introduce additional plans where each plan is
used to activate a new subgoal. These plans represent alternative means that an agent can
adopt to achieve the upper-level goal. For instance, G7 is OR-decomposed into G8 and
G9 (Fig. 3). This is represented in the ADF by introducing the additional plans P-G08
and P-G09 that respectively activate G8 and G9 , as ways to achieve goal G7. The
agent will perform meta-level reasoning on meta-goal of G7 (called choose planG07
in Fig. 2(c) line 17-22) to decide which plan should be adopted. In other words, we over-
ride the Jadex meta-level reasoning by defining a new plan (chooseG07 in Fig. 2(c))
to determine the least risky alternative. Such a plan has body RiskReasoning which is
a Java implementation of Risk Reasoning. OR-decompositions of plans/treatments can
be mimicked by defining a task that introduces an additional goal, and all subplans are
defined as means to achieve the such a goal. Similarly to what we have done for goal
OR-decomposition, the Jadex meta-level reasoning is overridden with a plan that uses
RiskReasoning.



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation 127

Finally, we need to represent Tropos means-end relations in a Jadex agent. Means-
end relations correspond to the trigger mechanism in Jadex. For instance, P7 �−→G8 is
represented by adding G8 as the trigger of P7 in the ADF (line 30-32 in Fig. 2(b)) or
denote by relating P07 to G08 with an arrow line (right-side in Fig. 3). This implemen-
tation of the Tropos means-end into the Jadex platform holds if the plan is not related
with any treatments (i.e., direct or indirectly through the event layer). On the contrary,
if the plan is related with a treatment, the mapping schema is slightly different because
several combinations of plans and treatments can be used to achieve the goal (e.g., it
can adopt only the plan, the plan with a treatment, the plan with some treatments, or
the plan and all treatments). For instance, the success of plan establish communi-
cation with ground control (P11) is obstructed by the risk due to loss the link of
communication(E1) (Fig. 3). In this setting, the UAV agent can adopt treatment have
fault tolerant communication link (T1) for retention purpose. The agent may adopt
only P11 (or P11a in Fig. 3 (right-side)), whereas in others it needs to adopt P11b,
which is the combination of P11 and T1, for ensuring the success of P11 execution.
This implementation in the Jadex platform is getting more complicated when several
treatments can be applied since the number of combinations of plans and treatments to
achieve a goal is exponential (Numb(plan) × 2Numb(treatment)). For instance, if G1

is obstructed by E2 directly and by E3 indirectly and the agent knows a single plan to
achieve G1 and three treatments (e.g., T2, T4, and T5) to mitigate E2 and E3, the agent
has eight possible strategies to achieve goal G1.

The proposed Jadex-implementation allows an agent to perform meta-level reason-
ing using GR framework. In particular, we have taken advantages of combining GR and
Jadex reasoning facilities. The Tropos approach explores all alternative solutions and
chooses an acceptable (and optimal) sequence of plans and treatments, whose execution
allows the agent to achieve the top goals from the current condition. Conversely, Jadex
reasoning only elicit a plan to achieve the goal, and later could be the case that the
plan will introduce other goals or trigger the execution of other plans. We have imple-
mented Risk Reasoning using Jadex approach. Thus, the agent keeps performing Risk
Reasoning each time there are some applicable plans, though Risk Reasoning has al-
ready provided a strategy for pursuing a goal. In other words, the reasoning mechanism
is executed to define the baseline strategy, and the reasoning will be executed again
considering the changes in the agent’s beliefs (especially the evidence about events) to
revise the existing strategy.

5 Related Work

In artificial intelligent community, a lot of effort has been devoted to develop reasoning
mechanisms dealing with uncertainty [12, 14, 13]. Here, the focus was on determining
how subtle uncertainties affect the reasoning mechanisms. Differently, the autonomous
agent community is mainly focusing on how to implement agent platforms (e.g., Jack,
Jason and Jadex) with reasoning mechanisms to deal with existing event and situa-
tion [29, 30, 20].

Helpern [12] proposes a framework to reasons about uncertainty from a single
agent viewpoint and multi-agent environments. An environment (i.e., entities outside



www.manaraa.com

128 Y. Asnar, P. Giorgini, and N. Zannone

the agent) is treated as black boxes, with no structure. Therefore, the likelihood of
events is viewed as a collection of random variables. In the multi-agent framework,
the environment can be structured on the basis of the interactions among agents. The
framework also models uncertainty values in terms of functions of time.

Markov Decision Process (MDPs) [13] is a mathematical framework to model a
decision-making process where outcomes are partly random and partly controlled by
agents. MDPs address optimization problems, represented as tuples 〈S, A, P, R〉, where
S is a set of possible states, A is a set of actions that caused state transitions, P is a set
of probabilities of action occurrences, and R is a set of rewards that are gained if an
action is executed. This framework uses value iteration algorithms to determine the set
of actions that minimize and maximize the reward. If risks are encoded as rewards,
the agent can use such algorithms to identify the least risk strategy by searching the
solution with minimal reward. Moreover, Samari and Parson [31] investigated on the
relation between MDPs and BDI architectures. Their results open the way for using
MDPs as reasoning mechanisms in the BDI architecture.

Another proposal is the Abstract Agent Programming Language3 (3APL), a cog-
nitive agent programming language that employs logical representation and reasoning
features based on the BDI model. In this setting, the beliefs are assumed to be certain, ei-
ther true or false. Kwisthout and Dastani [14] propose an extension of 3APL that allows
an agent to reason about uncertain beliefs. The authors recognized that 3APL is not suf-
ficient to reason about uncertain beliefs that result essential for dealing with many real
cases. This extension uses Dempster-Shafer theory [23] to model uncertainty in agent’s
beliefs. Those reasoning frameworks are really sufficient for reasoning about uncer-
tainty, even sometime it is too complex, but those frameworks does not specify how an
agent must react to deal with the effects of uncertainty. Finally, these approaches appear
to be sophisticated to model uncertainties in a reasoning mechanism of an agent. How-
ever, they lacks in representing the extent of uncertainty events in affecting agents. This
representation is important because reasoning mechanisms should distinguish events by
their effect in case they occur, besides only their likelihood/uncertainty.

In the autonomous agent community, there are some proposals [30, 20] that present
implementations of the UAV agent (called Wingman) in the Jack platform. The Wing-
man is provided with basic plans (e.g., flying quietly and at low altitude) in order to
achieve its goals (e.g., taking picture of enemy installations). The Wingman is also
provided with additional plans (e.g., flying as fast as possible) to deal with malicious
events such as being detected by enemy. When a malicious event occurs, the Wing-
man reasons about its plans and changes the adopted basic plan with an additional plan
to guarantee the achievement its goals. However, the Wingman does not try to antic-
ipate the occurrence of malicious events, but it just reacts when they happen. Similar
works have been done in [18, 32]. On the contrary, our approach allows the UAV agent
to anticipate malicious events by employing treatments when the risk is unacceptable.
Another implementation of reasoning in an autonomous agent has been proposed by
Braubach et al. [29]. They propose an implementation of the Cleaner World agent in
Jadex. Such an agent is designed to pick all wastes and throw them in trash bins. In this
implementation, the agent moves to a location once its sensors detect the existence of

3 http://www.cs.uu.nl/3apl/



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation 129

wastes. However, it would be more efficient if agent movements are not only driven by
the appearance of wastes, but they are anticipated by reasoning about the likelihood of
having new wastes in a certain location. In other words, those agent platforms do not
predict future events and react accordingly; most of them just react in case a particular
event happens.

Conversely, this paper is in the middle between those two approaches. Our work
adopts existing reasoning mechanisms in agent platforms (i.e., Jadex), and extends them
with the Goal-Risk reasoning mechanism [22]. This approach takes advantages of hav-
ing the reasoning mechanism implementable in agent platforms and, especially, in the
ones based on BDI. Though the proposed reasoning looks trivial compared with the
ones proposed in AI community, we remark that the GR framework is not meant to as-
sess the uncertainty precisely. Rather, it aims to support an agent in defining a strategy
whose risk and cost are lower than a certain threshold. As consequence, it also allows
agents to define a strategy to achieve their goals on the basis of probable events, and not
only the current context condition.

6 Conclusions and Remarks

In this paper, we have presented a Jadex implementation of the Tropos Goal-Risk frame-
work. The GR framework and Jadex differ in concepts and reasoning features and their
integration was not straightforward. In particular, we have shown that there are lim-
itations in Jadex to adopt all concepts supported by the GR framework, but we have
also shown that this mapping does not limit the expressiveness of the intended goal
deliberation process.

The initial GR reasoning mechanisms allow agents to perform cost-benefit analysis
on a strategy to be adopted, but require an exhaustive knowledge before the agent starts
pursuing its goals. On the other hand, the Jadex approach results faster in choosing a
strategy for a given goal and more adaptive to the current conditions of the agent. We
have taken advances of combining GR and Jadex reasoning features by implementing
complete plans and facilities for reasoning about them in the belief of the agent. The
intuition is to use complete plans as a baseline for the Jadex reasoning. Then, during
the pursuing of its goals, the agent evaluates the baseline by reasoning about risks in
the current situation.

We are currently extending the risk reasoning to cope with multi-agent environments.
In this setting, an agent should be able to reason about risks when it depends on other
agents for the fulfillment of its goals. Yet, treatments may be introduced when risks are
unacceptable or when the agent has no alternatives to achieve its goal besides depending
on other agents.

Acknowledgments

We thank Jan Sudeikat for many useful discussions on Jadex platform. This work has been
partially funded by EU-SENSORIA and EU-SERENITY projects, by FIRB-TOCAI
project, and by PAT-MOSTRO project.



www.manaraa.com

130 Y. Asnar, P. Giorgini, and N. Zannone

References

1. Lauber, J., Steger, C., Weiss, R.: Autonomous Agents for Online Diagnosis of a Safety-
critical System Based on Probabilistic Causal Reasoning. In: Proceedings of the The Fourth
International Symposium on Autonomous Decentralized Systems (ISADS 1999), Washing-
ton, DC, USA, pp. 213–219. IEEE Computer Society, Los Alamitos (1999)

2. Kumar, S., Cohen, P.R.: Towards a Fault-Tolerant Multi-Agent System Architecture. In: Pro-
ceedings of the Fourth International Conference on Autonomous Agents (AGENTS 2000),
pp. 459–466. ACM Press, New York (2000)

3. McCarthy, J.: Ascribing Mental Qualities to Machines. Technical Report Memo 326, Stan-
ford AI Lab, Stanford (1979)

4. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proceedings of 1st
International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319 (1995)

5. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92 (1993)
6. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press (1987)
7. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture. In: Pro-

ceedings of 2nd International Conference on Principles of Knowledge Representation and
Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann publishers Inc, San Francisco (1991)

8. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents-Summary of
an Agent Infrastructure. In: Proceedings of the 5th International Conference on Autonomous
Agents (AGENTS 2001), ACM Press, New York (2001)

9. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In: Multi-Agent
Programming: Languages, Platforms and Applications, pp. 149–174. Springer Science, Busi-
ness Media Inc. (2005)

10. Bordini, R.H., Hübner, J.F.: BDI Agent Programming in AgentSpeak Using Jason. In: Toni,
F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164. Springer, Heidel-
berg (2006)

11. COSO: Enterprise Risk Management - Integrated Framework. Committee of Sponsoring Or-
ganizations of the Treadway Commission (September 2004)

12. Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)
13. White, D.J.: Markov Decision Processes. John Wiley & Sons, Chichester (1993)
14. Kwisthout, J., Dastani, M.: Modelling Uncertainty in Agent Programming. In: Baldoni, M.,

Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 17–32.
Springer, Heidelberg (2006)

15. Asnar, Y., Giorgini, P., Mylopoulos, J.: Risk Modelling and Reasoning in Goal Models. Tech-
nical Report DIT-06-008, DIT - University of Trento (February 2006)

16. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-Oriented Requirements Analysis and Rea-
soning in the Tropos Methodology. Engineering Applications of Artificial Intelligence 18(2),
159–171 (2005)

17. Feather, M.S., Cornford, S.L., Hicks, K.A., Johnson, K.R.: Applications of tool support for
risk-informed requirements reasoning. Computer Systems Science & Engineering 20(1), 5–
17 (2005)

18. Dufrene Jr., W.R.: Approach for Autonomous Control of Unmanned Aerial Vehicle Using
Intelligent Agents for Knowledge Creation. Proceedings of The 23rd Conference on Digital
Avionics Systems Conference (DASC 2004) 2, 1–9 (2004)

19. Karim, S., Heinze, C.: Experiences with the Design and Implementation of an Agent-Based
Autonomous UAV Controller. In: Proceedings of 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2005), pp. 19–26. ACM Press, New
York (2005)



www.manaraa.com

Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation 131

20. Wallis, P., Ronnquist, R., Jarvis, D., Lucas, A.: The Automated Wingman - Using JACK
Intelligent Agents for Unmanned Autonomous Vehicles. Proceedings of IEEE Aerospace
Conference 5, 2615–2622 (2002)

21. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

22. Asnar, Y., Giorgini, P.: Modelling Risk and Identifying Countermeasures in Organizations.
In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 55–66. Springer, Heidelberg (2006)

23. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

24. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal Reasoning Techniques
for Goal Models. Journal of Data Semantics (October 2003)

25. Bedford, T., Cooke, R.: Probabilistic Risk Analysis: Foundations and Methods. Cambridge
University Press, Cambridge (2001)

26. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault Tree
Handbook with Aerospace Applications. NASA (2002)

27. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and Minimum-Cost Satisfiability for Goal
Models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 20–33. Springer,
Heidelberg (2004)

28. Georgeff, M., Lansky, A.: Reactive Reasoning and Planning. In: Proceedings of the Sixth Na-
tional Conference on Artificial Intelligence (AAAI 1987), Seattle, WA, pp. 677–682. Morgan
Kaufmann, San Francisco (1987)

29. Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal Representation for BDI Agent
Systems. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) PROMAS 2004.
LNCS (LNAI), vol. 3346, pp. 9–20. Springer, Heidelberg (2005)

30. Karim, S., Heinze, C., Dunn, S.: Agent-Based Mission Management for a UAV. In: Pro-
ceedings of the 2004 of Intelligent Sensors, Sensor Networks and Information Processing
Conference (ISSNIP 2004), pp. 481–486. IEEE Press, Los Alamitos (2004)

31. Simari, G.I., Parsons, S.: On the Relationship between MDPs and the BDI Architecture. In:
Proceedings of 5th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), pp. 1041–1048. ACM Press, New York (2006)

32. Vidolov, B., De Miras, J., Bonnet, S.: AURYON - A Mechatronic UAV Project Focus on
Control Experimentations. In: Proceedings of the International Conference on Computational
Intelligence for Modelling, Control and Automation and International Conference on Intelli-
gent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 2006), Washing-
ton, DC, USA, vol. 1, pp. 1072–1078. IEEE Computer Society Press, Los Alamitos (2005)



www.manaraa.com

Generation of Repair Plans for Change Propagation

Khanh Hoa Dam and Michael Winikoff

School of Computer Science and Information Technology,
RMIT University,

GPO Box 2476V, Melbourne, VIC 3001, Australia
{kdam,winikoff}@cs.rmit.edu.au

Abstract. One of the most critical problems in software maintenance and evo-
lution is propagating changes. Although many approaches have been proposed,
automated change propagation is still a significant technical challenge in soft-
ware engineering. In this paper we present an agent-oriented change propagation
framework based on fixing inconsistencies when primary changes are made to
design models. A core piece of the framework is a new method for generating
repair plans from OCL constraints that restrict these models.

1 Introduction

Software evolution is critical in the life-cycle of successful software systems, especially
those operating in highly volatile domains such as banking, e-commerce and telecom-
munications. A basic operation of software evolution is change: in order to adapt the
system to the desired requirements (be they new, modified, or an environmental change)
the system is changed [1]. In practice, the software engineer usually starts making
some primary changes that he/she can easily identify based on the characteristics of
the change requests and/or his/her knowledge and expertise. However, these primary
changes are not enough to make the design meet the change requests and may also
create inconsistencies. As a result, additional, secondary, changes might be needed.

The process of determining and making secondary changes is termed change prop-
agation. Since complex software systems consist of many artefacts, both design and
code, and since there are usually many options when making secondary changes, change
propagation is a complicated, labour-intensive, and expensive process. Hence, there is
a need for tools that provide more effective automated support for change propagation.
We do not believe that change propagation can be fully automated, since there are deci-
sions that involve tradeoffs where human expertise is required. However, it is possible
to provide tool support to assist with tracking dependencies, determining what parts of
the system are affected by a given change, and, as in this paper, determining and making
secondary changes.

We are basing our work on the conjecture that, given a suitable set of consistency
constraints, change propagation can be done by fixing inconsistencies in a design. In
other words, we propagate changes by finding places in a design where the desired
consistency constraints are violated, and fixing them until no inconsistency is left in the
design. For example, an agent type is added, and then consequently other agents need
to be modified to communicate with the new agent type.

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 132–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Generation of Repair Plans for Change Propagation 133

According to a survey in [2], handling inconsistencies has received much attention
in mainstream software engineering. However, most existing work either fails to advo-
cate effective automation (e.g. [3,4]) or fails to reflect the cascading nature of repairing
inconsistencies (e.g. [5]). In agent-oriented software engineering, there has not been
much work addressing the maintenance aspect, especially the change propagation is-
sue in the development of agent designs. In our previous work [6], we have shown
how an agent-oriented approach, specifically the BDI agent architecture, is a suitable
approach for performing change propagation and illustrated its capacity to deal with
consistency management in the context of the Prometheus methodology [7]. In this pa-
per we present a framework for change propagation which extends our previous work
(section 3) and introduce a mechanism for automatic repair plan generation from Object
Constraint Language (OCL) [8] constraints (section 4). We then discuss some related
work (section 5) before concluding and outlining our future work (section 6).

2 A Running Example

Throughout this paper we use a running example which comprises an initial design for
a simple stock trading management system (STMS). The design was developed using
the Prometheus methodology [7]. Figure 1 shows a system overview diagram of the
existing STMS. The system currently has three agents: a “GUI Agent” for handling
users’ requests such as buying stock or adding funds, a “Funding Agent” responsible
for managing users’ funds, and a “Trading Agent” for performing transactions such as
buying stocks. In addition, “GUI Agent” has the “Handling adding-funds request” plan
triggered by “Adding Funds Request” percept and the “Handling buying-stocks request”
plan triggered by “Buying Stocks Request” percept.

Fig. 1. System overview diagram for a stock trading management system



www.manaraa.com

134 K.H. Dam and M. Winikoff

The initial requirements for the STMS, however, only deal with buying stocks and
adding funds. Now suppose that the clients have asked to add a new functionality to the
system: STMS should also allow the users to place selling stock orders. Assume that
the software designer begins making some primary changes by adding a new percept
“Selling Stocks Request” and assigning the “GUI Agent” to handle it. At this point the
designer may start wondering what are the next changes that they need to make. The
following sections present our change propagation framework and show how it supports
the software engineer in propagating changes.

3 Architectural Overview

This section serves to introduce the architecture of the change propagation framework.
Figure 2 shows an overview of our architecture as a data flow diagram. At design
time, consistency constraints that are created by the repair administrator are input to
the change propagation framework along with a meta-model. The meta-model and
constraints can be developed by extracting relationships and dependencies from the
methodology that we want to apply the framework to. For instance, a Prometheus meta-
model and a set of related constraints have been developed in [6]. Normally the meta-
model and constraints are developed once for a given methodology (e.g. Prometheus)
and then reused: the user (software maintainer) is not required to develop a meta-model
or OCL constraints, although in some cases they may desire to add additional domain
or application specific constraints. Figure 3 shows an excerpt of the Prometheus meta-
model (refer to [6] for a full version) represented as a UML class diagram capturing the
relationships between an agent and other entities. The meta-model shows that an agent
can contain one or more plans. A plan can send and/or receive messages as well as per-
form some actions which may include accessing data to handle a percept or to achieve

Generate

repair plan

typesOCL constraints

Repair plan types
Plan types

repository

Modification

(e.g. change context conditions,

remove plan types,

change plan body)

Check

constraints
Violated constraints

Calculate cost

Repair plan instances

Plan instances with least cost

Select one

plan to

execute

User selection

Chosen repair plan instances

Constraints

Reposiroty
OCL

constraints

Basic cost

values

Basic costs

User input

Meta-model
Meta-model

Meta-model

Application’s

model

Execute plan

changes

model

Repair

admin

Repair

admin

User (e.g. software

maintainer)

Generate

repair plan

instances

Repair plan types

OCL constraints

Fig. 2. Change propagation framework



www.manaraa.com

Generation of Repair Plans for Change Propagation 135

some goals. As a result, agents also have these associations with goals, percepts, ac-
tions, messages, and data1.

The exact relationships between agents, plans and other entities are expressed us-
ing a set of Object Constraint Language (OCL) constraints. OCL [8] is part of the
UML standards which is used to specify invariants, pre-conditions, post-conditions and
other kinds of constraints imposed on elements in UML models. Below is an exam-
ple of an OCL constraint that defines the semantics of relationships between agents,
plans and percepts. In the OCL notation “self” denotes the context node (in this case
a Percept) to which the constraints have been attached and an access pattern such as
“self.agent” indicates the result of following the association between a percept and an
agent, which is, in this case, a collection of agents which handle the percept. OCL also
denotes operations on collections such as “SE → includes(x)” stating that a collection
SE must contain an entity x, or “SE → exists(c)” specifying that a certain condition
c must hold for at least one element of SE, or “SE → forAll(c)” specifying that c
must hold for all elements of SE. For detailed information on OCL see [8]. For ex-
ample, the following constraint, which could be expressed in more traditional form as
∀ a ∈ self.agent∃ pl ∈ a.plan : self ∈ pl.percept, states that: considering the set of
agents that handle the percept (self.agent), for each of the agents (a) if we consider the
plans of that agent (a.plan) then one of these plans (pl) must include the current percept
(self ) in its list of percepts (pl.percept).

Constraint 1. Any agent that handles a percept should contain at least one plan that
is triggered by the percept.

Context Percept inv:
self.agent→forAll(a : Agent | a.plan→exists(pl : Plan | pl.percept→includes(self)))

The repair plan generator takes the constraints and the meta-model as inputs, and returns
a parameterized set of event-triggered repair plan types2 that are able to repair violations
of the constraint. Our translation schema guarantees completeness and correctness, i.e.
there are no repair plans to fix a violation of a constraint other than those produced by
the generator; and any of the repair plans produced by the generator can fix a violation.
However, we also allow the repair administrator to use their domain knowledge and
expertise to modify generated repair plans or remove plans that should not be executed.
In section 4 we discuss this in more detail. The set of repair plan types is created ahead
of time and forms the library of plans that the change propagation engine uses to fix
constraint violations. Since the library of plans is derived before runtime, the efficiency
of deriving it is not crucial.

At runtime, the change propagation engine checks the current design models against
the OCL constraints, and any violations of these constraints are fixed using the repair
plans. The engine is represented and implemented using the BDI agent architecture.

1 In figure 3, associations marked with an ‘A∗’ are between agent and plan, and goal, percept,
action, data, and message. We group and represent them as a single association for readability.

2 The use of plans which are triggered by events is taken from the well-known and studied Belief
Desire Intention (BDI) agent architecture [9], which has been widely implemented within the
agents community (e.g. see [10]).



www.manaraa.com

136 K.H. Dam and M. Winikoff

-name : string

-description : string

Agent

-name : string

-description : string

Plan

1..*

ownedPlans

1..*

-name : string

-description : string

Percept

0..*1..*

-name : string

-description : string

Goal

-name : string

-description : string

Action

-name : string

-description : string

Data

*
*

*

*

-name : string

-description : string

-sequential constraints : string

Protocol / Interaction

initiator

1

* *
1..*

-name : string

-description : string

Message
InternalMsgExternal Msg

participant

2..*

*

sentMsg/receivedMsg*

A
*

A
*

Fig. 3. An excerpt of the Prometheus meta-model

Constraint checking may result in the detection of a number of violated constraints.
Each violated constraint is then posted as an event (“ViolationEvent”). A given Viola-
tionEvent may trigger a number3 of possible repair plan instances. In order to help select
which repair plan instance to use we calculate the cost of each repair plan instance. We
recognize that fixing one violated constraint may also repair or violate others as a side
effect, and so the cost calculation algorithm computes the cost of a given repair plan
instance as including the cost of its actions (using basic costs assigned by the repair
administrator), the cost of any other plans that it invokes directly, and also the cost
of fixing any constraints that are made false by executing the repair plan. If there are
several equal least cost plans, they are presented to the user, otherwise the cheapest
plan is selected. Once a plan is selected, it is then executed to fix the violation, and
hence propagate changes. We allow the repair administrator to specify the repair cost
for each basic repair action. The repair administrator may use this mechanism to adjust
the change propagation process. For example, if he/she wishes to bias the change prop-
agation process towards adding more information then he/she may assign lower costs
to actions that create new entities or add entities, and higher costs to actions that delete
entities.

The above change propagation framework is currently being implemented. The cost
calculation and plan execution components were implemented and used to test some
small case studies. At the time of writing this paper, we are at the final stage of com-
pleting the implementation of the plan generator component. Due to space limitations,
in the remainder of this paper we focus on describing the repair plan generator compo-
nent of the framework. However, we will also briefly illustrate how the cost calculation
component works based on the STMS example.

3 Which will always be greater than zero, due to the way in which plans are generated (see
section 4).



www.manaraa.com

Generation of Repair Plans for Change Propagation 137

4 Generating Repair Plan Types

Since a large design can contain a substantial number of constraints, the number of re-
pair plans may be very large. In these cases, hand-crafting repair plans for all constraints
becomes a labour intensive task. In previous work [6], we encountered this issue when
developing repair plans for Prometheus design models. In addition, it is difficult for the
repair administrator to know if the set of repair plans which they create is complete
and correct. Therefore, we have developed a translation schema that takes as input con-
straints, expressed as OCL invariants, and generates repair plans that can be used to
correct constraint violations.

A similar approach has been proposed in [5] which takes xlinkit rules defining con-
sistency between documents and returns a set of repair actions. One key difference
between their work and ours is that we generate abstract, structured, repair plans that
are instantiated at runtime.

P ::= E[: C] ← B
C ::= C ∨ C | C ∧ C | ¬ C | ∀ x • C | ∃ x • C | Prop
B ::= true | Add Entity To SE | Remove Entity From SE | Create Entity : Type |

Change Property to Property | if C then B | !E | B1; B2 | for each x in SE B

Fig. 4. Repair plan abstract syntax

Our syntax for repair plans (see figure 4) is based on AgentSpeak(L)4 [11], but with
some differences (most notably in specifying the actions, and in allowing for richer
plan bodies). Each repair plan, P, is of the form E : C ← B where E is the triggering
event (conceptually, the name of the constraint P is fixing, subscripted with either t or
f to indicate whether the constraint is being made true or false); C is an optional “con-
text condition” (Boolean formula5) that specifies when the plan should be applicable6;
and B is the plan body. The plan body can contain primitive actions such as adding and
deleting entities and relationships, and changing properties. The plan body can also con-
tain sequences (B1; B2), conditionals and loops, and events which will trigger further
plans (!E).

For a given constraint form, for example c1 = not c2, we generate repair plans that
repair c1 (make it true). These plans are defined in terms of other plans that repair sub-
constraints. In this example, the plan to repair c1, i.e. make it true, is defined using
plans that make c2 false. Formally, if we use R(c) to denote the complete set of repair
plans for constraint c, and P(c) to denote the specific plans for the constraint form,
then for a constraint c1 with sub-constraint c2 (as is the case for c1 = not c2) we

4 We chose to use AgentSpeak(L) as a basis because it is a simple and compact notation that
captures the essence of BDI-based agent oriented programming languages.

5 “Prop” denotes a primitive condition such as checking whether x > y or whether x ∈ SE.
6 In fact when there are multiple solutions to the context condition, each solution generates a

new plan instance. For example, if the context condition is x ∈ {1, 2} then there will be two
plan instances.



www.manaraa.com

138 K.H. Dam and M. Winikoff

P(c def
= SE→includes(x)) =

{ct ← Add x to SE}

P(c def
= SE→includesAll(SE’)) =

{ct ← for each x in (SE’ - SE) !c′t (x),
c′t (x) ← Remove x from SE’,
c′t (x) ← Add x to SE}

P(c def
= SE→excludes(x)) =

{ct ← Remove x from SE}

P(c def
= SE→excludesAll(SE’)) =

{ct ← for each x in SE ∩ SE’ !c′t (x)
c′t (x) ← Remove x from SE’,
c′t (x) ← Remove x from SE}

P(c def
= SE→notEmpty()) =

{ct : x ∈ Type(SE) ← Add x to SE,
ct ← Create x : Type(SE) ; Add x to SE}

P(c def
= SE→isEmpty()) =

{ct ← for each x in SE Remove x from SE}

P(c def
= SE→forAll(c1)) =

{ct ← for each x in SE if ¬ c1(x) then !c′t (x),
c′t (x) ← Delete x from SE,
c′t (x) ← !c1t(x)}

P(c def
= SE→exists(c1)) =

{ct : x ∈ SE ← !c1t(x),
ct : x ∈ Type(SE) ∧ x 
∈ SE ← Add x to SE ;
!c1t(x),
ct ← Create x : Type(SE) ; Add x to SE ; !c1t(x)
}

P(c def
= c1 or c2) = {ct : ¬ c1 ← !c1t ,

ct : ¬ c2 ← !c2t}

P(c def
= c1 and c2) =

{ct : ¬ c1 ∧ c2 ← !c1t,
ct : ¬ c2 ∧ c1 ← !c2t,
ct : ¬ c1 ∧ ¬ c2 ← !c1t ; !c2t}

P(c def
= not c1) = { ct ← !c1f }

P(c def
= c1 implies c2) = { ct ←!c1f , ct ←!c2t}

Fig. 5. Plan generation rules (ct)

have that:R(c1) = P(c1) ∪R(c2). More generally, if constraint c has sub-constraints
s(c) = {c1, . . . , cn} then

R(c) = P(c) ∪
⋃

c′∈s(c)

R(c′)

Figure 5 gives the definition of the P function: for each rule the generation of R(c)
will include the given plans, as well as the plans obtained from the sub-constraints. The
definition of P(c) considers, for each case, all the possible ways in which c can be
false, and all the possible ways in which it can be repaired. For example, if c = SE →
includes(x) then c is false if and only if x is not an element of SE, and consequently c
can be made true only by adding x to SE.

If a constraint has more than one sub-constraint then fixing a sub-constraint might
conflict with the plan that repairs the other sub-constraint. For example, if c = c1 and c2

then fixing c2 may, depending on the definition of c2 and c1, make c1 false. Therefore,
in order to guarantee that the generated repair plans always correctly fix the constraint,
we include two top level plans into P(c). For making a constraint c true, in addition to
the definition in figure 5, P(c) includes {fixC : c← true, fixC : ¬ c← ! ct ; ! fixC}.

The figure shows an excerpt of the translation rules from OCL constraints such as
includes, includesAll, excludes, excludesAll, isEmpty, notEmpty, and logical connec-
tives (and, or, not, implies, forAll, exists). Note that for each constraint c we generate
rules that make that constraint true ct and rules that make it false cf , however, for space



www.manaraa.com

Generation of Repair Plans for Change Propagation 139

reasons, figure 5 only shows the ct rules. Generally speaking the rules for generating cf

follow inverse patterns to those for ct. For example, for c = SE → includes(x) the rule
for cf is cf ← Remove x from SE.

The term “SE” denotes a set expression which can be the name of a collection, or
a derived collection, built from another collection using an operator. For example, the
set S2 = S1 → select(c) includes elements from the set S1 for which the condition
c holds. Although adding an element to a basic collection (or removing it from the
set) is a primitive action, adding or deleting elements from derived collections is not a
primitive action. Instead, we model addition and deletion from derived collections using
additional plans. For example, in order to add the element x to SE = S→ select(c) we
need to ensure both that x is in S, and that c(x) is true; on the other hand if we want to
remove x from SE then we can either remove x from S, or make c(x) false. Similarly,
if SE = S → intersection(S2) then to add x to SE we need to ensure that x is added to
both S and S2; and to remove x from SE we can either remove it from S or from S2. We
have developed rules for operations including select, reject, union, intersection, minus
and symmetricDifference. The complete set of rules to generate repair plans from OCL
constraints can be found in [12].

4.1 Completeness and Correctness

The translation guarantees correctness and completeness since it is developed by con-
sidering all the possible ways in which a constraint can be false, and hence all the
possible ways in which it can be made true. In this section we provide an excerpt of
the proof of correctness and completeness of the plan generator. The full proof can be
found in [12].

In order to ease the discussion ahead, we provide here a definition of a correct repair
plan and a complete set of repair plans.

Definition 1 (Correct plan). A repair plan P correctly fixes a violated constraint c if
and only if when P finishes its execution (i.e. all actions are performed and subgoals
are achieved), c becomes valid.

As mentioned earlier, the selection of applicable repair plans is based on the notion
of costs. As a result, when repair plans are generated at compile time, we only focus
on plans that have no redundant steps in fixing a particular constraint. Such plans are
considered as minimum plans which are defined as below.

Definition 2 (Minimum plan). A repair plan P for fixing constraint c is said to be a
minimum plan if and only if all of its actions (obtained by running the plan) contribute
towards fixing c, i.e. taking out any of the actions results in failing to fix c.

Given the definitions of correct and minimum plans, a complete set of repair plans is
defined as below.

Definition 3 (Complete set of repair plans). A set of repair plans R(c) for a con-
straint c is said to be complete if and only if R(c) contains all minimum correct repair
plans for c.



www.manaraa.com

140 K.H. Dam and M. Winikoff

Based on the above definitions, the correctness and completeness of our translation
scheme are expressed by the following theorem.

Theorem 1. For any given OCL constraint c the set of repair plans R(c) produced
by the plan generator is correct and complete i.e. it contains all the possible correct
minimum plans. In other words, there are no minimum plans to fix c that do not belong
toR(c); and any of the repair plans inR(c) can fix c and are minimal.

We will prove, by induction, that the above theorem holds with respect to the translation
schema for ct (figure 5).

First of all, we will prove that theorem 1 holds for all the basic OCL constraints that
we cover. This is relatively easy since repair plans are generated by considering all the
possible ways in which a constraint can be false. In [12], we provide a proof of the the-
orem for all basic OCL constraints that we consider in figure 5. Due to space limitation,

we provide here a detailed proof for a typical example: c
def= SE→includesAll(SE’).

The above constraint can be written as:

c
def= ∀ x • x ∈ SE′ ⇒ x ∈ SE
def= ∀ x • (¬ x ∈ SE′) ∨ (x ∈ SE)
def= ∀ x • x 
∈ SE′ ∨ x ∈ SE

Assume that c is violated, i.e. ¬ c is true, expressed as follows:

¬ c
def= ¬ ∀ x • x 
∈ SE′ ∨ x ∈ SE
def= ∃ x • ¬ (x 
∈ SE′) ∧ ¬ (x ∈ SE)
def= ∃ x • x ∈ SE′ ∧ x 
∈ SE

Therefore, to prevent ¬ c from being true (or c from being false) we either delete x
from SE′ (to make x ∈ SE′ false) or add x to SE (to make x 
∈ SE false). In other words,
there is exactly one way to fix c when it is violated: for each of the elements in SE′ but
not in SE, either delete it from SE′ or add it to SE. This is also the minimum way of
fixing c, i.e. it does not involve removing or adding any redundant elements. As can be
seen in figure 5, the repair plan set R(c) is {ct ← for each x in (SE’ - SE) !c′t(x), c′t(x)
← Remove x from SE’, c′t(x)← Add x to SE}. The three repair plans exactly address
the fixing approach for c that we mentioned earlier. Therefore, we can conclude that
R(c) contains minimum correct plans and that it is complete.

An OCL constraint is ultimately a combination (and, or, not, xor and implies) of
basic constraints. We have proved that theorem 1 holds for all basic constraints. We
now use that to prove, by induction, that theorem 1 holds for the basic connectives:
and, or, and not. The other connectives (xor and implies) can be derived from the basic
ones. Below is a proof for the or connective. For the others, please refer to [12].

For c
def= c1 or c2, assume that theorem 1 holds for R(c1) and R(c2), i.e. both of

them are correct and complete sets. Now we need to prove that it also holds for R(c).
According to figure 5, we have:

P(c) = {ct : ¬ c1←!c1t, ct : ¬ c2←!c2t}



www.manaraa.com

Generation of Repair Plans for Change Propagation 141

and we also have:
R(c) = P(c) ∪R(c1) ∪R(c2)

Because of our induction assumption, c1t and c2t can fix c1 and c2 respectively.
Therefore, plan ct : ¬ c1← !c1t is able to repair c1 and plan ct : ¬ c2← !c2t is able
to repair c2. Since the constraint c holds if either of c1 or c2 holds, any plan that is
able to fix c1 or c2 can fix c. As a result, we can conclude thatR(c) contains plans that
correctly fix c. These plans are also minimum because they do not contain redundant
repair actions. For instance, plan ct : ¬ c1← !c1t fixes only c1 when c1 is false, which
is just sufficient to repair c without the need to fix c2.

We have proved that R(c) contains correct and minimum repair plans for c. Now
we prove the completeness of the set R(c). Assume that there is a minimum plan P
that fixes c and does not belong to R(c). Plan P should aim to fix either c1 or c2 and
without loss of generality we assume that P aims to fix c1. Therefore, plan P is also
the minimum plan for fixing c1, which results in, due to the induction assumption,
that P belongs to R(c1). Since R(c) contains R(c1), P also belongs to R(c), which
contradicts our previous assumption. Hence, there does not exist any minimum plan P
that fixes c and does not belong to R(c), i.e. the setR(c) is complete.

The induction proof above shows that the generated repair plans of a constraint cor-
rectly fix the constraint. However, there are special cases in which repair plans for fixing

sub-constraints conflict with each other. For instance, for c
def= c1 and c2 the generated

repair plans are:

P(c) = {fixC : c← true, fixC : ¬ c← ! ct; ! fixC,

ct : ¬ c1 ∧ c2←!c1t, ct : ¬ c2 ∧ c1←!c2t, ct : ¬ c1 ∧ ¬ c2←!c1t; !c2t}

Assume that c is false because c1 is true and c2 is false, then fixC calls the plan
aiming to fix c2, i.e. ct : ¬ c2 ∧ c1← !c2t. However, this plan may make c1 become
false, which results in c still being false. Since fixC is called recursively until c becomes
true, the plan aiming to fix c1 is called, i.e. ct : ¬ c1 ∧ c2← !c1t. However, this plan
may also make c2 false, in which case the plan aiming to fix c2 is called and this may
continue as a loop. In general, if it is not possible to make both c1 and c2 true at the same
time, i.e. every plan that fixes c1 violates c2 and vice versa, then c is not satisfiable. If
c is satisfiable, then there exists a repair plan that is able to fix c. In this case, our cost
algorithm (discussed in section 3) will favor that repair plan over any other repair plans
that causes an infinite loop.

Overall, we can conclude that our generated repair plans for a constraint correctly
fix it if the constraint is satisfiable. Our cost algorithm is able to detect infinite loops
caused by conflict between repair plans fixing sub-constraints.

4.2 Example

Now let us consider a simple example of how repair plans are generated for the con-
straint previously presented in section 3.

Context Percept inv:
self.agent→forAll(a : Agent | a.plan→exists(pl : Plan | pl.percept→includes(self)))



www.manaraa.com

142 K.H. Dam and M. Winikoff

We denote the above constraint as c(self), and ct(self) is the event of making c(self)
true. We also define the following abbreviations:

c1(self, a)
def= a.plan→exists(pl : Plan | pl.percept→includes(self))

c2(self, pl)
def= pl.percept→includes(self)

Our repair plan generator produces the following repair plans for constraint c, since
it has the form SE→ forAll(c).

ct(self)← for each a in self.agent if ¬ c1t(self, a) then !c′t(self, a) (P1)
c′t(self, a)← Delete a from self.agent (P2)
c′t(self, a)← !c1t(self, a) (P3)

For constraint c1 we generate the following plans, since the constraint is of the form
SE→ exists(c). In the rules of figure 5 “Type(SE)” denotes the type of SE’s elements, in
this case SE (which is a.plan) contains plans, and therefore in P5 the context condition
requires that pl be an element of the set of all plans, denoted Set(Plan).

c1t(self, a) : pl ∈ a.plan← !c2t(self, pl) (P4)
c1t(self, a) : pl ∈ Set(Plan) ∧ pl 
∈ a.plan← Add pl to a.plan ; !c2t(self, pl) (P5)
c1t(self, a)← Create pl : Plan ; Add pl to a.plan ; !c2t(self, pl) (P6)

Similarly, for constraint c2 we generate the following plan.

c2t(self, pl)← Add self to pl.percept (P7)

The above repair plan types are instantiated with actual variable bindings at run-
time to produce different plan instances. For instance, in our STMS example previously
described in section 2, after the software engineer performs the primary changes, the
constraint c(self) is violated where self is the “Selling Stock Request” percept because
there is only one agent handling it (self.agent = {“GUI Agent”}), and that agent con-
tains two plans (a.plan = {“Handling adding-funds request”,“Handling buying-stocks
request”}) but neither of the plans is triggered by the percept. The plans to repair the
constraint are either not assigning “GUI Agent” to handle the “Selling Stock Request”
percept (P2), or having one of the agent’s plans be triggered by the percept (P3). Plan
P3 then produces three alternatives: choosing an existing plan of the agent (which is
either “Handling adding-funds request” or “Handling buying-stocks request) and make
the “Selling Stock Request” percept be one of its triggers (P4 and P7); or choosing an
existing plan in the design other than the two already in the agent and make the percept
be one of its triggers (P5 and P7); or creating a new plan, adding it to “GUI Agent”, and
make the percept be one of its triggers (P6 and P7).

As discussed in section 3, we calculate the cost for each repair plan and present a list
of equal least cost plans to the user. Let A denote the cost of an addition, C the cost of
creating a new entity, and D denote the cost of a deletion. Note that we allow the repair
administrator to define these elementary costs. He/she may use this mechanism to adjust
the change propagation process as discussed in section 3. Then, considering the tree of



www.manaraa.com

Generation of Repair Plans for Change Propagation 143

P1

P2

P4

P3

P5 P6

P7P7 P7

D A

A 2A C+2A

AA A

plans below, the cost of P7 is the cost of adding the per-
cept to plan pl’s percepts (i.e. A), the cost of P4 is just
the cost of P7 (i.e. A), the cost of P5 is the cost of P7
plus the cost of adding plan pl to the plans of agent a
(i.e. 2 × A), and the cost of P6 is that plus the cost of
creating a new plan (i.e. C + 2 × A). Since any of P4,
P5 or P6 can be used to fix c1t, and the system picks
the cheapest, the cost of P3 is the cost of P4 (i.e. A).
The cost of P2 is D, and if we assume that deletion is
more expensive than addition, then the cost of P1 is A,
and the repair plan selected involves P1, P3, P4 and P7
(indicated in bold).

All plan types generated by our repair system are stored in a repository. As we have
noted earlier, the repair administrator is able to modify the generated repair plan types,
including modifying the plans’ context conditions, modifying the plans’ body or even
adding additional plans or removing generated repair plans. For example, the repair
administrator may think that it does not make sense in practice to have a percept that is
not handled by any agent. Therefore, he/she may add a context condition into plan P2
specifying that it is applicable only if the set self.agent contains at least two elements.

5 Related Work

The issue of assisting software engineers to deal with software changes has received
much attention in the areas of software evolution and maintenance. Change impact anal-
ysis has been extensively investigated, but is only loosely related to our work. Change
impact analysis techniques [13] aim to assess the extent of the change, i.e. the arte-
facts, components, or modules that will be impacted by the change, and consequently
how costly the change will be. Our work is more focused on implementing changes by
propagating changes between design artefacts in order to maintain consistency as the
software evolves.

There has been a range of work using a rule-based approach to detect and resolve
inconsistencies (or constraint violations) both in the areas of databases and software
engineering. In these approaches, rules are defined in terms of constraints and actions
in such a way that if a constraint is violated, actions will be performed to repair the vi-
olation. The work in the area of databases focuses on integrity constraint maintenance
[14], i.e. making changes to transactions or databases to recreate a state of integrity.
There has been some work which addresses how repair actions can be automatically
generated from constraints expressed in first order logic in relational, active and de-
ductive databases [15,16,17]. One key difference between their work and ours is that
we generate abstract, structured, repair plans that are instantiated at runtime. The ap-
proaches proposed in [15,16] are similar to ours in which they involve user intervention
in selecting repair actions. In contrast, in [17] a system is described that generates ac-
tions from closed, range-restricted first order logic formulae. Since the repair algorithm
relies on the rules of the database and the closed-world assumption, it can automatically
find repairs for violated existential formulae without user intervention.



www.manaraa.com

144 K.H. Dam and M. Winikoff

In [5], constraints between distributed documents are expressed in xlinkit, a combi-
nation of first order logic with XPath expressions. The paper also presents a framework
which automatically derives a set of repair actions from the constraints. In [4], such
rules form the knowledge base of an expert system. However, these approaches tend to
consider only a single change and consequently do not explicitly address the cascading
nature of change propagation.

Consistency checking is an area clearly related to our work. Our framework can
be built on top of existing (UML) consistency checking approaches. However, note
that the iterative nature of cascading changes ideally requires incremental consistency
checking as proposed in ArgoUML7 and xlinkit [18]. Advanced event-driven consis-
tency checking approaches such as Egyed’s [19] can be integrated in our framework as
the constraint checking component.

Several other approaches implement the change support mechanism based on some
underlying mathematical formalism. For example, the formalism of graph rewriting has
been used to deal with change propagation [3] and model synchronization [20]. In [21]
and [22], they propose to transform (UML) specifications to Petri-Nets and Descrip-
tion Logic respectively. These approaches then exploit existing consistency checks that
have been defined for the mathematical formalism. However, it is not clear to what
extent these approaches suffer from the traceability problem: that is, can a reported
inconsistency be traced back to the original model? Furthermore, the identification of
transformations that preserve and enforce consistency still remains a critical issue [21].
By contrast, our approach deals directly with UML models without any transformation
and thus does not suffer from that issue.

6 Conclusions and Future Work

In this paper we have presented an approach for change propagation in design models.
Our framework takes as input a meta-model and well-formedness constraints (in OCL),
and makes use of repair plans to propagate changes by fixing inconsistencies. A key
feature is that these repair plans are generated automatically from the OCL constraints,
in a way that is sound and complete. We use a design of a stock trading management
system developed using the Prometheus methodology as an illustrative example show-
ing how the framework works. Our proposed framework is generic and can be applied to
object-oriented methodologies as well, indeed, we have already applied it to the object-
oriented UML design of an ATM system, which contains a class diagram (18 classes
such as ATM, Bank, Transaction) and 10 sequence diagrams (corresponding to 10 use
cases such as GetPIN, PrintReceipt). We then introduced several realistic requirement
changes and applied our framework to propagate changes. Although the results have
shown the applicability and scalability of our framework, more complex case studies
are needed to evaluate it.

Some specific areas for future work that we intend to investigate are: (1) Imple-
menting the repair plan generator (2) Investigating how to extend our approach to deal
with programming language code as well as design artefacts. (3) Dealing more effi-
ciently with plan recipes with a context condition of the form x ∈ Type(SE) by being

7 http://argouml.tigris.org/

http://argouml.tigris.org/


www.manaraa.com

Generation of Repair Plans for Change Propagation 145

lazy: instead of creating a plan instance for each possible value, defer the choice and
use subsequent constraints to narrow down the range of possible values for x. (4) Per-
forming a more extensive case study, in order to better ascertain the scalability of our
approach; and also conducting more evaluation to better ascertain the effectiveness of
the approach. There are two measurements that we should take into account when we
evaluate the framework. We plan to choose an existing, reasonable-size, system and
then define a classification of changes. We then input these to our framework and ana-
lyze the accuracy of what our framework recommends. In addition, we investigate how
our framework deals with different system sizes to measure its efficiency.

Acknowledgments

This work is supported by the Australian Research Council under grant LP0453486, in
collaboration with Agent Oriented Software. The authors would also like to thank Lin
Padgham for discussions relating to this work.

References

1. Swanson, E.B.: The dimensions of maintenance. In: ICSE 1976: Proceedings of the 2nd
international conference on Software engineering, Los Alamitos, CA, USA, pp. 492–497.
IEEE Computer Society Press, Los Alamitos (1976)

2. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering: Survey
and open research issues. In: Chang, K.S. (ed.) Handbook of Software Engineering and
Knowledge Engineering, pp. 24–29. World Scientific, Singapore (2001)

3. Rajlich, V.: A model for change propagation based on graph rewriting. In: Proceedings of
the International Conference on Software Maintenance (ICSM), pp. 84–91. IEEE Computer
Society, Los Alamitos (1997)

4. Sourrouille, J.L., Caplat, G.: Checking UML model consistency. In: Jézéquel, J.-M., Huss-
mann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, Springer, Heidelberg (2002)

5. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair actions.
In: ICSE 2003: Proceedings of the 25th International Conference on Software Engineering,
pp. 455–464. IEEE Computer Society, Los Alamitos (2003)

6. Dam, K.H., Winikoff, M., Padgham, L.: An agent-oriented approach to change propagation
in software evolution. In: Proceedings of the Australian Software Engineering Conference
(ASWEC), pp. 309–318. IEEE Computer Society, Los Alamitos (2006)

7. Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide. John
Wiley & Sons, Chichester (2004)

8. Object Management Group: Object Constraint Language (OCL) 2.0 Specification (2006)
9. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Rich, C., Swartout,

W., Nebel, B. (eds.) Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, San Mateo, CA, pp. 439–449. Morgan Kaufmann
Publishers, San Francisco (1992)

10. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

11. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)



www.manaraa.com

146 K.H. Dam and M. Winikoff

12. Dam, K.H., Winikoff, M.: An agent-based approach to change propagation. Technical Report
TR-06-04, RMIT University (2006)

13. Arnold, R., Bohner, S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996), ISBN 0-818-67384-2

14. Mayol, E., Teniente, E.: A survey of current methods for integrity constraint maintenance
and view updating. In: Proceedings of the Workshops on Evolution and Change in Data
Management, Reverse Engineering in Information Systems, and the World Wide Web and
Conceptual Modeling, London, UK, pp. 62–73. Springer, Heidelberg (1999)

15. Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L.: Automatic generation of production rules
for integrity maintenance. ACM Trans. Database Syst. 19(3), 367–422 (1994)

16. Gertz, M., Lipeck, U.W.: An extensible framework for repairing constraint violations. In:
Proceedings of the IFIP TC11 Working Group 11.5, First Working Conference on Integrity
and Internal Control in Information Systems, pp. 89–111. Chapman & Hall, Ltd, Boca Raton
(1997)

17. Moerkotte, G., Lockemann, P.C.: Reactive consistency control in deductive databases. ACM
Trans. Database Syst. 16(4), 670–702 (1991)

18. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency checking
and smart link generation service. ACM Transactions on Internet Technology 2(2), 151–185
(2002)

19. Egyed, A.: Instant consistency checking for the UML. In: ICSE 2006: Shanghai, China (May
2006)

20. Ivkovic, I., Kontogiannis, K.: Tracing evolution changes of software artifacts through model
synchronization. In: Proceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM), pp. 252–261. IEEE Computer Society, Los Alamitos (2004)

21. Engels, G., Kuster, J.M., Heckel, R., Groenewegen, L.: Towards consistency-preserving
model evolution. In: Proceedings of the International Workshop on Principles of Software
Evolution (IWPSE), pp. 129–132. ACM Press, New York (2002)

22. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logics to main-
tain consistency between UML models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003)



www.manaraa.com

An Expressway from Agent-Oriented Models to

Prototypes

Kuldar Taveter and Leon Sterling

Department of Computer Science and Software Engineering
the University of Melbourne

Vic 3010, Australia
{kuldar,leon}@csse.unimelb.edu.au
http://www.csse.unimelb.edu.au

Abstract. Agent-oriented software engineering can be viewed as ap-
plying software engineering principles to agent-oriented development or
applying agent-oriented principles to software engineering. In this paper,
we are more concerned with the second view. We describe how prototype
systems can be efficiently created from agent-oriented domain and de-
sign models. We propose a conceptual space that accommodates model
transformations described by the Model-Driven Architecture. We explain
agent-oriented domain models and platform-independent design models
and show how the first can be mapped to the latter. We demonstrate
how design models can be turned into the implementation of an agent-
based prototype on a specific platform. The approach has potential for
accelerating the process of rapid prototyping.

1 Introduction

Agent-oriented software engineering can be viewed as applying software engi-
neering techniques and principles to the development of agent-oriented systems,
but also as applying agent-oriented principles to developing software. In the
latter spirit, we believe that agent-oriented modelling techniques are not just
useful for designing systems consisting of software agents, i.e. multi-agent sys-
tems. Agent-oriented modelling can, and should, be more generally utilized for
designing distributed open socio-technical systems. It can accommodate Web
services and component-based systems. What makes agent-oriented modelling
suitable is distinguishing between active entities — agents — and passive ones
— objects.

Model-Driven Architecture (MDA) [1] by Object Management Group (OMG)
is an approach to using models in software development that separates the do-
main model of a socio-technical system from its design and implementation
models. The MDA proposes three types of models: Computation-Independent
Models (CIM), Platform-Independent Models (PIM), and Platform Specific
Models (PSM). In MDA, a platform denotes a set of subsystems and technolo-
gies that provide a coherent set of functionalities through interfaces and specified

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 147–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.csse.unimelb.edu.au


www.manaraa.com

148 K. Taveter and L. Sterling

usage patterns. Some examples of platforms are CORBA, Java 2 Enterprise Edi-
tion, Microsoft.NET and JADE.

In addition to defining model types at different abstraction layers, the MDA
also introduces the term “Model transformation” which is the process of convert-
ing one model to another model of the same system. It defines mapping between
models as a “specification of a mechanism for transforming the elements of a
model conforming to a particular metamodel into elements of another model
that conforms to another (possibly the same) metamodel” [1]. To that end, dif-
ferent techniques like model marking as described by MDA, and using templates
and mapping languages have been proposed. The MDA focuses on transfor-
mation between PIM and PSM, because executable PSM models can be easily
generated from PIM models. This is not the case for mapping from CIM to PIM,
which are conceptually more separated. To support mapping from CIM to PIM,
we propose an appropriate set of CIM and PIM concepts that can be mapped
from one another.

As represented in Figure 1, the modelling abstractions we advocate in CIM
include goals and roles, which appear in most agent-oriented methodologies with
a similar — though often not identical — meaning. In addition, social policies
are constraints on interaction and behaviour of agents playing the roles. Domain
entities define the basic concepts of the problem domain at hand.

For PIM, we have chosen activities that are triggered by rules as key notions.
Both activities and rules are rooted in activity theory [16]. We prefer them to
capabilities and plans because activities and rules represent more naturally the
nature of activities by human and man-made agents and are free from the bias
towards any specific agent architecture like BDI [6]. According to Figure 1, goals
and roles can be mapped to activity types and agent types, respectively. Social
policies can be mapped to rules and domain entities to knowledge items. Activity
types, in turn, consist of action types.

The mappings explained do not imply the losing of knowledge of higher abstrac-
tion levels at lower abstraction levels. For example, the knowledge of roles can still
be retained and utilized at the PIM level and goals after they have been assigned
to activities for achieving them can still be explicitly represented in PIM.

The platform-independent notions action types, rules, and agent types, along
with perception types and knowledge items can be mapped into the correspond-
ing concrete action types, behavioural construct types, and concrete agent types
as well as event types and concrete object types of some specific platform like
JADE [13].

The mappings outlined in Figure 1 can be used for rapid obtaining of proto-
types. In some cases, also final implementations can be obtained, but usually de-
sign decisions are restricted by commercially available and preferred technology.

In addition to the horizontal dimension of modelling, which is represented by
Figure 1, there is also a vertical dimension. In [9], the first author has performed
a thorough study of various software engineering methodologies and modelling
approaches and has concluded that agent-oriented models should address a prob-
lem domain from six perspectives: informational, organisational, interactional,



www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 149

Fig. 1. The Conceptual Space of transformations between different layers of MDA

Table 1. The Viewpoint Modelling Framework

Viewpoint models Viewpoint aspect

Abstraction layer Organisation/ Information Motivation/
Interaction Behaviour

Computation Role Models Domain Model Goal Models
independent (ROADMAP) (ROADMAP) (ROADMAP)

domain analysis
(CIM)

Platform Interaction Models Information Behaviour Models
independent (RAP/AOR) Model (RAP/AOR)

computational (RAP/AOR)
design
(PIM)

Platform specific Class and Sequence Class Diagrams Class and Sequence
design and Diagrams (UML) (UML) Diagrams (UML)

implementation
(PSM)



www.manaraa.com

150 K. Taveter and L. Sterling

functional, motivational, and behavioural. In [11], we have identified informa-
tional, interactional, and behavioural perspectives as the most crucial ones for
agent-oriented design. On the other hand, it can be concluded from [3], [4], and
[17] that organisational, informational, and motivational perspectives are the
most relevant ones for agent-oriented domain analysis. In Table 1, we have ac-
cordingly grouped the perspectives explained above as three viewpoint aspects.
This table can be populated in many ways. For example, at the CIM level, mo-
tivation models are featured in MaSE [18] as Goal Hierarchy Diagrams, domain
models have been proposed as Environment Models in GAIA [19], and organ-
isation models appear as Organisation Diagrams in MESSAGE [20]. Similarly,
at the PIM level, behaviour models are represented as Multi-Agent Behaviour
Descriptions in PASSI [21], information models appear in MAS-CommonKADS
[22] as Expertise Models, and interaction models are featured in Prometheus [14]
as Interaction Diagrams and Interaction Protocols.

The structure of Table 1 is thus not associated with any specific software
engineering methodology but provides a universal framework for classifying the
kinds of models appearing in various methodologies and approaches. However,
we have populated Table 1 in a specific way to cater for the needs of rapid
prototyping addressed by this article. In other words, we have selected the types
of models appearing in Table 1 because it has been shown earlier [23] that this
combination of models facilitates rapid prototyping. The model types chosen by
us originate in the ROADMAP [3,4] and RAP/AOR [11] methodologies and in
the Unified Modelling Language (UML) [12]. Please note that UML models as
such are not platform-specific but can be used for modelling platform-specific
issues.

In the next section we present types of models at the three abstraction layers
— computation independent modelling, platform independent computational de-
sign, and platform specific design and implementation — by using an example of
creating a system for ordering take-away food, which has been borrowed from [2].

2 Computation Independent Modelling

According to MDA [1], the models created at the computation independent
modelling stage should be capable of bridging the gap between experts about
the domain and its requirements on one hand, and experts about the design
and construction of the socio-technical system on the other. The models should
address motivation for the system to be designed, organisation of the system,
and the environment in which the system is to be situated. Our experience with
industry reported in [23,27], as well as with students in our graduate Agents
class at the University of Melbourne, has proven that motivation for the system
can be effectively communicated by Goal Models, organisation of the system —
by Role Models — and the environment — by Domain Models.

Our goal and role models have been described in [3] and [4], and we review
here for completeness. The Goal Model provides a high-level overview of system
requirements. Its main objective is to enable both domain experts and developers



www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 151

to pinpoint the goals of the system and the roles the system needs to fulfil in order
to meet those goals. Design and implementation details are not described at all,
as they are not addressed during requirements analysis. The Goal Model contains
three components: goals, quality goals, and roles. A goal represents a functional
requirement of the system. A quality goal, as its name implies, represents a
non-functional or quality requirement of the system. A role is some capacity or
position that the system requires in order to achieve its goals. As Figure 2 shows,
goals and quality goals can be decomposed into smaller related sub-goals and sub-
quality goals, allowing hierarchical structure between a goal and its sub-goals.
The resulting hierarchy is by no means an “is-a” or generalisation relationship as
is common in object-oriented methodologies. Rather, the hierarchical structure
is just to show that the sub-component is an aspect of the top-level component.

Figure 2 represents the Goal Model of a socio-technical system to be de-
signed for ordering take-away food. In the diagram, the root goal is to ‘pro-
vide meal’. This goal is associated with the roles Customer, Ordering Centre,
and Restaurant. The role Customer represents the stakeholders whose needs the
socio-technical system is to satisfy. The system itself consists of actors playing
the roles Ordering Centre and Restaurant. The goal to ‘provide meal’ can be
decomposed into the following four sub-goals: to ‘take order’, ‘provide waiting
estimate’, ‘confirm order’, and ‘deliver meal’. The goal to ‘provide meal’ is char-
acterized by the quality goal ‘customer happy’. There are also the quality goals
‘fast reply’ and ‘fast delivery’ pertaining to the sub-goals to ‘provide waiting
estimate’, ‘confirm order’, and ‘deliver meal’. Quality goals represent social poli-
cies, which can be anything from access rights, to social norms, to obligations
[17]. Please note that the order in which the sub-goals are presented in Figure 2
does not per se imply any chronological order in which they are to be achieved.

The Role Model describes the properties of a role. The Role Model consists of
the role name, textual description, and the specifications of its responsibilities

Fig. 2. The Goal Model for the take-away food ordering system



www.manaraa.com

152 K. Taveter and L. Sterling

and constraints. Clearly, this is analogous to the delegation of work through the
creation of positions in a human organisation. Every employee in the organisa-
tion holds a particular position in order to realise business functions. Different
positions entail different degrees of autonomy, decision-making, and responsi-
bilities. Taking this analogy, the Role Model is the “position description” for a
particular role. Table 2 shows the Role Model created for the role Restaurant
shown in the Goal Model in Figure 2.

Table 2. The Role Model for the Restaurant

Role Name Restaurant

Description Provides the time estimate for delivery and delivers the meal

Receive the order
Estimate the time required for cooking

Responsibilities Inform the ordering centre about the time required
Accept the confirmation by the ordering centre

Deliver the meal to the customer

Constraints The deliverer must use an electronic signature device to register
the delivery

The Domain Model represents agents’ knowledge about their physical and
conceptual environments. It can be viewed as an ontology providing a common
framework of knowledge for agents playing the roles of the problem domain. For
example, a take-away food ordering system requires the domain entities Cook,
Dish, and Order. The first describes the kinds of agents in the system’s physical
environment, the second — a particular kind of food and the third — a particular
order. The Domain Model can be initially expressed as a list of domain entities
showing for each of them with which role(s) it is associated. For example, the
domain entities Dish and Order are associated with all three roles — Customer,
Ordering Centre, and Restaurant — while the domain entity Cook is associated
with just the role Restaurant. Relationships between domain entities, such as
generalisation and aggregation, can be represented by using a UML-like notation.

3 Platform Independent Design

According to MDA [1], platform independent modelling focuses on the operation
of a system while hiding the details necessary for a particular platform. The
resulting models are suitable for use with a number of different platforms of
a similar type. The models should address interactions between agents of the
system to be designed, information that those agents require for operating, and
behaviours of the agents.

Since our models can be used for designing Web services as well as agent-based
systems, we are interested in goal-oriented rather than goal-governed agents [5].
Goal-governed agents refer to the strong notion of agency, that is, they are agents
with some forms of cognitive capabilities, making possible explicit representation



www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 153

of their goals that drive the selection of agent actions. An example class of
goal-governed agents are BDI-agents [6]. Goal-oriented agents refer to the weak
notion of agency, that is, they are agents whose behaviour is directly designed
and programmed to achieve some goal, which may not be explicitly represented.
Goal-oriented agents generalize over a wide range of software components rather
than just over software agents. An example goal-oriented agent architecture is
AGENT-0 by Yoav Shoham [7]. Agents of both kinds can be derived from the
Goal Models, Role Models, and Domain Models.

We view goal-oriented agents as being engaged in various activities. Based
on activity theory [16], we consider activities as fundamental units of human
and man-made agent behaviour. Activity is started by a rule when the activity’s
triggering conditions are true. Activity is triggered by some event perceived by an
agent and/or by some value associated with an object in the agent’s knowledge
base.

We have chosen as the goal-oriented agent architecture of PIM Knowledge-
Perception-Memory-Commitment (KPMC) agents, proposed in [8] and extended
by [9]. KPMC-agents can be graphically modelled by using diagrams included by
the Radical Agent-Oriented Process / Agent-Object-Relationship (RAP/AOR)
methodology of software engineering and rapid prototyping, which was intro-
duced in [11]. Before introducing PIM models of the case study of ordering
take-away food, we briefly explain the notation that will be used.

An external (that is, modelled from the perspective of an external observer)
Agent-Object-Relationship (AOR) diagram specified by Figure 3 enables the rep-
resentation in a single diagram of the types of human and man-made (for ex-
ample, software) agents of a socio-technical system, together with their beliefs
about instances of “private” and external (“shared” with other agents) object
types. There may be attributes and/or predicates defined for an object type
and relationships (associations) among agent and/or object types. A predicate,
which is visualized as depicted in Figure 3, may take parameters.

Figure 3 reflects that our graphical notation distinguishes between an action
event (an event perceived by one agent that is created through the action of
another agent, such as a physical reception/delivery of a meal) type and a non-
action event type (for example, types of temporal events or events created by
natural forces). We further distinguish between a communicative action event
(or message) type and a non-communicative (physical) action event type like
providing the customer with a meal.

The first thing to be done at the design stage is mapping the abstract con-
structs from the analysis stage — roles — to concrete constructs — agent types.
Each agent type may be assigned one or more roles and the other way round.
In our simple example, assigning the roles to agent types is straightforward. All
three roles — Customer, Centre, and Restaurant — are mapped to the respective
man-made agent types CustomerAgent, CentreAgent, and RestaurantAgent.
There may be several instances of CustomerAgent and RestaurantAgent, and
there is exactly one CentreAgent.



www.manaraa.com

154 K. Taveter and L. Sterling

In [11], three complementary modelling perspectives are identified for agent-
oriented design. The resulting models can be represented as just one diagram of
the kind shown in Fig. 3. We will now treat platform independent design from
each of the three perspectives — interaction design, information design, and be-
haviour design. As stated above, interaction design models capture interactions
between the agents of the system, information design models represent informa-
tion that those agents require for operating, and behaviour design models specify
behaviours of the agents.

In our view, the mapping between CIM and PIM cannot be fully formalized
because of the intangible nature of CIM models. What is important is that
the mapping is traceable in the sense that it can be seen how CIM modelling
constructs relate to the PIM models. The mapping should be supported by tools
no matter what degree of automation can be achieved. In the next three sections,
we also explain the rationale of deriving a design model of each kind.

Fig. 3. The belief structure and behaviour modelling elements of external AOR
diagrams

3.1 Interaction Design

After determining agent types, we can capture interactions between agents of
those types with the Interaction Model represented as an interaction-frame dia-
gram. Interactions can be derived from responsibilities included by Role Models.
The interaction frame diagram depicted in Figure 4 consists of two interac-
tion frames that have been derived from the Role Model shown in Table 2: one
between the agents of a customer and the ordering centre, and the other one be-
tween the agents of the ordering centre and a restaurant. Messages in interaction
frames have four modalities: “request”, “inform”, “confirm”, and “reject”. With
a message of the “request” modality, an agent requests another agent to perform
a certain action, which can be a communicative action — sending a message — or



www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 155

a physical action. A message of the “inform” modality serves to inform an-
other agent on something. The last two modalities explain themselves. Messages
of different modalities can be combined. For example, with a message of the
type request inform time-estimate(Dish(?DishName)), an agent requests
another agent to inform it about the expected time required to prepare and de-
liver the meal described by a serialized object of the type Dish. An argument
preceded by a question mark appearing in message content, such as ?DishName,
denotes a string. The interaction represented at the bottom of Figure 4 models
a physical action of the type provideDish(Order(?OrderID)) that occurs be-
tween agents of the types RestaurantAgent and CustomerAgent. This action is
naturally only registered rather than performed by the corresponding software
agents. This can be accomplished by an electronic device incorporating both an
actuator and a sensor where the action is pushing a button by the deliverer and
the event is signing by the customer.

Fig. 4. The Interaction Model for the take-away food ordering system

3.2 Information Design

In information modelling, we further extend and formalize the ontology providing
a common framework of knowledge for the agents of the problem domain. Recall
that the initial version of this ontology — the Domain Model — was created at
the stage of domain analysis. Each agent can see only a part of the ontology;
that is, each agent views the ontology from a specific perspective. We represent
the resulting Information Model as the AOR agent diagram shown in Figure 5.



www.manaraa.com

156 K. Taveter and L. Sterling

Fig. 5. The Information Model for the take-away food ordering system

In the figure, an agent of the type CustomerAgent, representing a customer,
has knowledge about one agent of the type CentreAgent, which represents the
ordering centre, and about several agents of the type RestaurantAgent repre-
senting restaurants. The CentreAgent, in turn, is aware of agents of both other
types. Each restaurant agent is aware of the CentreAgent and of agents of its
customers served by the restaurant.

Additionally, the Information Model depicted in Figure 5 represents that
agents of all three types may have a shared knowledge about one or more in-
stances of the object types Dish and Order. The model also shows that a restau-
rant agent has private knowledge about inter-related instances of the object types
Dish and Order. Atomic information elements are described as attributes rather
than objects. As is reflected by Figure 5, an agent of the type RestaurantAgent
has the attributes name and address that characterize the restaurant repre-
sented by it. Objects of the types Dish and Order are also described by their
respective attributes.

3.3 Behaviour Design

Under behaviour design, goals of CIM are mapped to activity types of PIM. An
activity of a given type accomplishes a goal from the Goal Model. For example,



www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 157

Fig. 6. The Behaviour Model for an agent representing a restaurant

an activity of the type “Estimating the time” represented in Figure 6 achieves a
goal to ‘provide waiting estimate’ modelled in Figure 2. Rules determine when,
by whom, and under which conditions an activity is invoked. For example, rule
R1 specifies that an activity of the type “Estimating the time” is started by the
RestaurantAgent upon receiving from the CentreAgent a request to provide
the waiting estimate. Rules also carry out social policies. For example, rules R1,
R2, R3, and R4 shown in Figure 6 realize the social policy “Fast reply”.

Figure 6 represents the Behaviour Model of a RestaurantAgent type in the
scenario of ordering take-away food. The behaviour involves the activity types
“Estimating the time” and “Confirming the order”. An activity of the type



www.manaraa.com

158 K. Taveter and L. Sterling

“Estimating the time” is started by rule R1, which is triggered by a commu-
nicative action event (message) of the type request inform time-estimate
(Dish(?DishName)). As has been pointed out in Section 3.1, with this message,
the CentreAgent requests the RestaurantAgent to inform it about the esti-
mated waiting time required to prepare and deliver the meal that is identified
by a serialized object of the type Dish. Rule R2 prescribes an instance of the
object type Dish to be created from the serialized object. As there can be three
different types of dishes in our example, an instance of Dish created by rule R2
always belongs to one of the subtypes Steak, Pasta, or Salad. It can be seen
in Figure 6 that each of them is modelled with the respective value of the at-
tribute estimate. Additionally, there is an Object Constraint Language (OCL)
[12] clause specifying that if all the cooks are busy at the time of creating an
instance of Dish, represented by the predicate isBusy of the RestaurantAgent’s
private object type Cook, the value of the attribute estimate should be increased
by 15. Rule R2 further specifies that a modified instance of the object type Dish
should be serialized and sent to the CentreAgent.

An activity of the type “Confirming the order” is started by rule R3. This
rule processes a serialized instance of the object type Order, which is included
by a message of the type request provideDish(Order(?OrderID)). The mes-
sage means that the CentreAgent requests the RestaurantAgent to perform
a physical action of the type provideDish(Order(?OrderID)) according to
the enclosed order. Rule R4 prescribes an instance of the internal object type
Order to be created from the serialized object. At the creation of an Order
instance, the value of its identifying attribute orderID will be automatically
generated. The OCL clause dish = Dish[order.dishName] specifies the cre-
ation of the association link between the order and the corresponding instance
of Dish. Rule R4 further expresses through its connection to the message type
confirm(Order(?OrderID)) that a modified instance of the object type Order
should be serialized and sent to the CentreAgent. In a later stage of the busi-
ness process of ordering take-away food, an association between the order and
the object representing the cook to which the order is allocated will be
created.

4 Platform Specific Design and Rapid Prototyping

Finally, the modelling constructs of PIM are mapped to the corresponding con-
structs of PSM. It has been shown in [9] that external AOR diagrams can be
straightforwardly mapped into the programming constructs of the Java Agent
Development Environment (JADE, http://jade.cselt.it/) agent platform. The
JADE agent platform [13] is a software framework to build agent-based systems
in the Java programming language in compliance with the standard proposals for
multi-agent systems by the Foundation for Intelligent Physical Agents (FIPA,
http://www.fipa.org/). The mapping principles are more particularly addressed
in [9].



www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 159

Table 3. Mapping of notions of KPMC agents to the object classes and methods of
JADE

Notion of KPMC agent Object class in JADE Object method of JADE

Object type java.lang.Object -

Agent type jade.core.Agent -

Elementary activity type jade.core.behaviours. -
OneShotBehaviour

Sequential activity type jade.core.behaviours. -
SequentialBehaviour

Parallel activity type jade.core.behaviours. -
ParallelBehaviour

Execution cycle of jade.core.behaviours. -
a KPMC agent CyclicBehaviour

Waiting for a message jade.core.behaviours. -
to be received ReceiverBehaviour

Starting the first-level jade.core.Agent public void addBehaviour
activity (Behaviour b)

Starting a sub-activity jade.core.behaviours. public void
SequentialBehaviour addSubBehaviour

(Behaviour b)

Starting a parallel sub- jade.core.behaviours. public void
activity ParallelBehaviour addSubBehaviour

(Behaviour b)

Start-of-activity event type jade.core.behaviours. public abstract void
OneShotBehaviour action()

Start-of-activity event type jade.core.behaviours. public abstract void
SequentialBehaviour, onStart()
jade.core.behaviours.

ParallelBehaviour

End-of-activity event type jade.core.behaviours. public int onEnd()
Behaviour

Agent message jade.lang.acl.ACLMessage -

Table 3 shows how various modelling notions of KPMC agents can be mapped
to the corresponding object classes and methods of the JADE platform. In
particular, activity types and the execution cycle of a KPMC agent map to JADE
behaviours. Rules are not included in Table 2 because they are mapped to vari-
ous constructs represented in Java. The programs resulting from the mappings
are complemented by simple graphical user interfaces and thereafter executed,
as is exemplified by a snapshot shown in Figure 7.

Table 3 does not include the mapping of OCL clauses. We used OCL clauses
for representing pre- and post-conditions, which specify the state of the world
before and after triggering a rule without considering how the desired state of
the world will be achieved. This feature of being “side-effect free” is one of the
basic features of OCL. The particular way of changing the world state is specified



www.manaraa.com

160 K. Taveter and L. Sterling

Fig. 7. A snapshot of the prototype created from the CIM and PIM models

only at the PSM level in terms of the constructs of a particular platform, which
in our case study was JADE.

The first author has shown in earlier work [11,27] how to represent external
AOR diagrams by a graphical tool, enabling mappings into equivalent XML-
based representations that are then interpreted and executed by software agents.
Since the authors of this paper no longer have access to that tool, we have
mapped manually the models for the case study of the take-away food ordering
system. However, this was not hard because of the intuitiveness and straightfor-
wardness of the mappings under discussion.

5 Related Work and Conclusions

We have described a technique that maps models of a problem domain into the
platform-independent design models of a socio-technical system created for that
domain, and from the design models to the a system implementation on a specific
platform. The mappings are straightforward, which has been achieved by making
use of agent-oriented analysis and design models, as well as of an agent-based
implementation platform. Representing the design models in a single diagram
increases the transparency of the mappings.

This paper was triggered by the approach to prototyping described in [2].
While the message sequence charts used in [2] are claimed to represent require-
ments, we believe they are essentially design models. Our technique, on the



www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 161

contrary, starts with modelling requirements at a high level of abstraction that
is understandable to both domain experts and software engineers. We acknowl-
edge that we fall short of [2] in fully automated generation of models from design
models. However, as has been shown in [11,27], this is not hard to accomplish
with our approach, which we plan to do in the near future.

We emphasise that the contribution is that we can generate prototypes rapidly
from high-level requirements prior to commitments to detailed design decisions.
Other agent-oriented methodologies tend to concentrate on an ultimate agent
implementation, and have not focussed on early rapid prototyping. While in prin-
ciple this may be possible, for example, generating prototypes from Prometheus
system overview diagrams [14], not all information such as agent beliefs have been
identified or are available during requirements analysis and high level design.

Because of limited space, we confine specific comparisons with related work
to other MDA-related model mapping techniques. CIM models employed in [15]
represent agent component types, such as belief, trigger, plan, and step. Jay-
atilleke et al.’s approach assumes from the very beginning that a system will be
implemented as a software agent system. However, in our view this is a design
decision, which should be postponed until the design phase. Considering this, the
starting point for our approach entails technology-independent notions of goals,
roles, social policies, and domain entities. Differently from us, the approaches
described in [28] and [29] address only mapping from PIM to PSM in the con-
text of software agent systems, while our approach has a more generic software
engineering stance.

In [25], agents in domain modelling are described in terms of their capabilities,
which are then mapped into plans consisting of activities. Differently from [25],
we view activities as fundamental concepts. This enables to distinguish between
contextual, goal-oriented, and routine activities. The notion of norms used in [26]
is roughly equivalent to what we mean by rules. However, we think that the work
reported in [26] could benefit from the precise modelling of actions and events
adopted by us.

In summary, our technique can be used for rapid production of prototypes
from agent-oriented models. The technique has been used in industry-related
projects of business-to-business electronic commerce [11,27], manufacturing sim-
ulation [24], and future home management [23]. We are currently applying the
technique in a research project with industry dealing with airport simulation
and optimisation.

References

1. MDA Guide Version 1.0.1. Retrieved February 3, 2007, from
http://www.omg.org/cgi-bin/doc?omg/03-06-01

2. Barak, D., Harel, D., Marelly, R.: InterPlay: Horizontal scale-up and transition
to design in scenario-based programming. IEEE Trans. Soft. Eng. 32(7), 467–485
(2006)

3. Juan, T., Sterling, L.: The ROADMAP meta-model for intelligent adaptive multi-
agent systems in open environments (Revised Papers). In: Giorgini, P., Müller, J.P.,
Odell, J.J. (eds.) AOSE 2003. LNCS, pp. 826–837. Springer, Heidelberg (2004)

http://www.omg.org/cgi-bin/doc?omg/03-06-01


www.manaraa.com

162 K. Taveter and L. Sterling

4. Kuan, P.P., Karunasakera, S., Sterling, L.: Improving goal and role oriented analy-
sis for agent based systems. In: Proceedings of the 16th Australian Software Engi-
neering Conference (ASWEC 2005), Brisbane, Australia, 31 March – 1 April 2005,
pp. 40–47. IEEE Computer Society Press, Los Alamitos (2005)

5. Castelfranchi, C., Falcone, R.: From automaticity to autonomy: The frontier of
artificial agents. In: Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.) Agent Au-
tonomy, pp. 103–136. Kluwer Academic Publishers, Dordrecht (2003)

6. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI architecture. In:
Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of Knowledge Representation
91 (KR-91), pp. 473–484. Morgan Kaufmann, San Francisco (1991)

7. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92
(1993)

8. Wagner, G., Schroeder, M.: Vivid agents: Theory, architecture, and applications.
Journal of Applied Artificial Intelligence 14(7), 645–675 (2000)

9. Taveter, K.: A multi-perspective methodology for agent-oriented business mod-
elling and simulation. PhD thesis, Tallinn University of Technology, Estonia (ISBN
9985-59-439-8) (2004)

10. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-oriented methodologies. Idea
Group (2005)

11. Taveter, K., Wagner, G.: Towards radical agent-oriented software engineering pro-
cesses based on AOR modelling. In: [10], pp. 277–316

12. Unified Modeling Language: Superstructure. Version 2.0 (August, 2003), Retrieved
February 5, 2007 from http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

13. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a
FIPA-compliant agent framework. Software - Practice and Experience 31, 103–128
(2001)

14. Padgham, L., Winikoff, M.: Developing intelligent agent systems. John Wiley &
Sons, Chichester (2004)

15. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven component-based
development framework for agents. Comput. Syst. Sci. & Eng. 20(4) (2005)

16. Kuutti, K.: Activity Theory as a potential framework for human-computer inter-
action research. In: Nardi, B. (ed.) Activity Theory and Human Computer Inter-
action, pp. 17–44. MIT Press, Cambridge (1995)

17. Rahwan, I., Juan, T., Sterling, L.: Integrating social modelling and agent interac-
tion through goal-oriented analysis. Comput. Syst. Sci. & Eng. 21(2), 87–98 (2006)

18. DeLoach, S.A., Kumar, M.: Multi-agent systems engineering: An overview and case
study. In: [10], pp. 317–340

19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Multi-agent systems as computa-
tional organizations: The Gaia methodology. In: [10], pp. 136–171

20. Caire, G., Coulier, W., Garijo, F., Gomez-Sanz, J., Pavon, J., Kearney, P., Mas-
sonet, P.: The MESSAGE methodology. In: Bergenti, F., Gleizes, M.-P., Zam-
bonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems: The
Agent-Oriented Software Engineering Handbook, pp. 177–194. Kluwer Academic
Publishers, Dordrecht (2004)

21. Cossentino, M.: From requirements to code with the PASSI methodology. In: [10],
pp. 79–106

22. Iglesias, C. A., Garijo, M. The agent-oriented methodology MAS-CommonKADS.
In: [10], pp. 46–78.

http://www.omg.org/cgi-bin/doc?ptc/2003-08-02


www.manaraa.com

An Expressway from Agent-Oriented Models to Prototypes 163

23. Sterling, L., Taveter, K.: The Daedalus Team. Building agent-based appliances with
complementary methodologies. In: Tyugu, E., Yamaguchi, T. (eds.) Knowledge-
Based Software Engineering: Proceedings of the Joint Conference on Knowledge-
Based Software Engineering, Tallinn, Estonia, August 28-31, 2006, pp. 223–232.
IOS Press, Amsterdam (2006)

24. Taveter, K., Wagner, G.: Agent-oriented modelling and simulation of distributed
manufacturing. In: Rennard, J.-P. (ed.) Handbook of Research on Nature Inspired
Computing for Economy and Management, pp. 541–556. Idea Group (2006)

25. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder intentions to
software agent implementations. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

26. Kasinger, H., Bauer, B.: Towards a model-driven software engineering methodol-
ogy for organic computing systems. In: Hamza, M.H. (ed.) Computational Intelli-
gence: IASTED International Conference on Computational Intelligence, Calgary,
Alberta, Canada, July 4–6, 2005, pp. 141–146. IASTED/ACTA Press (2005)

27. Taveter, K.: A Technique and Markup Language for Business Process Automation.
In: Proceedings of the Workshop on Vocabularies, Ontologies, and Rules for The
Enterprise (VORTE 2006), held in conjunction with the Tenth IEEE International
EDOC (The Enterprise Computing) Conference, Hong Kong, 16–20 October 2006,
IEEE Computer Society Press, Los Alamitos (2006)

28. Perini, A., Susi, A.: Automating model transformations in agent-oriented modeling.
In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167–178.
Springer, Heidelberg (2006)

29. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvester, B., Berre, A.-J., Zinnikus, I.:
Metamodels, models, and model transformations: Towards interoperable agents. In:
Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI),
vol. 4196, pp. 123–134. Springer, Heidelberg (2006)



www.manaraa.com

Introduction to AOSE Tools for the Conference

Management System

Lin Padgham1 and Michael Luck2

1 School of Computer Science, RMIT University, Melbourne, Vic 3000, Australia
lin.padgham@rmit.edu.au

2 Department of Computer Science, King’s College London, UK
michael.luck@kcl.ac.uk

Abstract. Over several years, conference management systems have
been used as an example to illustrate various aspects of computing, in
particular agent-oriented software engineering methodologies. At AOSE
in 2007, the conference management system was used as a basis for pro-
viding a comparison of different AOSE tools and methodologies from
different researchers. This paper provides an overview of the basic sys-
tem, and an introduction to the papers describing those methodologies
and tools that follow.

1 Introduction

In the call for papers for AOSE 2007 we had requested submissions for a com-
parative designs track. Proponents of AOSE methodologies were asked to design
a common system — a conference management system described in the litera-
ture, and to submit papers presenting the key aspects of the design using their
methodology. The intention of this track was to provide alternative designs of a
common system, thus allowing for a more direct comparison between method-
ologies, and also providing a useful resource to the community — namely a set
of designs using different methodologies.

We also invited demonstrations of AOSE tools at AOSE 2007, and decided
to combine these two aspects. We invited developers of three prominent AOSE
methodologies, MaSE, Prometheus and Tropos, each with well developed toolk-
its, to demonstrate their respective tools by focussing on the design artefacts
produced by the toolkit, in designing the Conference Management System. They
were each asked to produce design handouts at the workshop, and to participate
in a structured interactive toolkit presentation. Danilo Santos, who responded
to the special track on comparative designs then presented his work in a similar
way, within this session.

2 The Conference Management System Example

A multiagent conference management system was first proposed as an example
by Ciancarini et al. [1] in 1998, and based on work describing conference man-
agement systems elsewhere (for example, [5]). It has since been widely used for

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 164–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Introduction to AOSE Tools for the Conference Management System 165

the elaboration and application of different methodologies within agent-oriented
software engineering [9,2,3] as it is suitable for illustrating a variety of aspects
of multi-agent system analysis and design. It has also been used for other do-
mains, including the illustration of systems related to mobile computation [4]
and coordination systems and languages [6,7,8].

Presenters were referred to the version described in [3], as a focus for their
design and toolkit presentations.

The conference management system is described as a multiagent system that
supports the management of conferences that require the coordination of sev-
eral individuals and groups to handle the paper selection process. This process
includes paper submission, paper reviews, paper selection, author notification,
final paper collection, and the printing of the proceedings. Authors may submit
papers to the system up until the submission deadline.

Once the submission deadline has passed, members of the program committee
(PC) review the papers by either contacting referees and asking them to review
a number of the papers, or by reviewing them themselves. Once all the reviews
are complete, a final decision is made on whether to accept or reject each paper.
Each author is notified of this decision and authors with accepted papers are
asked to produce a final version that must be submitted to the system. All final
copies are collected and sent to the printer for publication in the conference
proceedings.

As all the presenters were familiar with the conference reviewing process of
the AAMAS conference, this also influenced the system designs. AAMAS has a
Senior Program Committee each member of which oversees the reviewing of a set
of papers by the Program Committee (or reviewers). Individual Senior Program
Committee members then make recommendations to the Program Chairs to
accept/reject the particular papers, based on the reviews.

3 Comparison of Methodologies and Tools

In particular, the conference management system provides a sufficiently generic
problem description that can be used across multiple tools and techniques, yet is
also sufficiently detailed to allow these tools and techniques to provide specific de-
tails that illustrate their features. In relation to the application of agent-oriented
software engineering, there are several potential distinct points of comparison
and evaluation, but we describe three key areas next.

Notation or Modeling Language: Among others, a software methodology is
typically characterised by a modeling language, used for the description of
models, and for defining the elements of the model together with a spe-
cific syntax or notation, and associated semantics. Indeed, accepted meth-
ods for industrial development must depend on standardised representations
of artifacts supporting all phases of the software life cycle. In particular,
these standardised representations are needed by tool developers to provide
commercial-quality tools that mainstream software engineering departments
need for industrial agent systems development.



www.manaraa.com

166 L. Padgham and M. Luck

Process: A software methodology is also characterised by a software process,
defining the development activities, the interrelationships among the activi-
ties, and the ways in which the different activities are performed. In particu-
lar, the software process defines phases for process and project management
as well as quality assurance. Each activity results in one or more deliverables,
such as specification documents, analysis models, designs, code, testing spec-
ifications, testing reports, performance evaluation reports, and so on, serving
as input for subsequent activities.

Tool Support: Tool support relates to the availability of software for deploying
an agent infrastructure or for aiding in the development of agent applications.
Agent toolkits aim at providing a significant proportion of the basic building
blocks required to support an operational agent-based system. Of course,
like development in many other domains, different methodologies will merit
different kinds of tool support, often representing the underlying philosophy
of the respective methodology developer about how agent-based systems
should operate.

4 The AOSE 2007 Session

This session was concerned primarily with tools, but inevitably, other aspects
must also be considered for any coherent presentation.

The tools session took place in four iterations, covering System specification,
Architectural Design, Detailed Design, and other features/aspects. By iterating
between the tools, using the same example, it was easy to see both similarities
and differences. While each approach and each tool set has different strengths,
there was also a substantial amount of agreement on key processes and design
artefacts.

The session was very successful, and provided a valuable means of understand-
ing and evaluating the relative features and benefits of the different approaches;
as a result, the developers/presenters of Tropos, Prometheus and MaSE/
O-MaSE were invited to contribute papers to this volume. These papers, to-
gether with the original paper from Santos et al., are contained in this section.

References

1. Ciancarini, P., Niestrasz, O., Tolksdorf, R.: A case study in coordination: Conference
Management on the Internet (1998),
ftp://cs.unibo.it/pub/cianca/coordina.ps.gz

2. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent System Engineering: the
Coordination Viewpoint. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp.
250–259. Springer, Heidelberg (2000)

3. DeLoach, S.: Modeling organizational rules in the multi-agent systems engineering
methodology. In: AI 2002: Proceedings of the Fifteenth Conference of the Cana-
dian Society for Computational Studies of Intelligence on Advances in Artificial
Intelligence, London, UK, 2002, pp. 1–15. Springer, London (2002)

ftp://cs.unibo.it/pub/cianca/coordina.ps.gz


www.manaraa.com

Introduction to AOSE Tools for the Conference Management System 167

4. Durán, F., Verdejo, A.: A conference reviewing system in Mobile Maude. In: Gad-
ducci, F., Montanari, U. (eds.) Proceedings of the Fourth International Workshop on
Rewriting Logic and its Applications, WRLA 2002. Electronic Notes in Theoretical
Computer Science, vol. 71, pp. 79–95. Elsevier, Amsterdam (2002)

5. Mathews, G.J., Jacobs, B.E.: Electronic management of the peer review process.
In: Proceedings of the fifth international World Wide Web conference on Computer
networks and ISDN systems, pp. 1523–1538. Elsevier Science Publishers B. V, Am-
sterdam, The Netherlands (1996)

6. Montangero, C., Semini, L.: Composing Specifications for Coordination. In: Cian-
carini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, pp. 118–133.
Springer, Heidelberg (1999)

7. Rossi, D., Vitali, F.: Internet-based coordination environments and document-based
applications: A case study. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION
1999. LNCS, vol. 1594, pp. 259–274. Springer, Heidelberg (1999)

8. Scutellà, A.: Simulation of conference management using an even-driven coordina-
tion language. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS,
vol. 1594, pp. 243–258. Springer, Heidelberg (1999)

9. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organizational abstractions for the
analysis and design of multi-agent system. In: Ciancarini, P., Wooldridge, M.J. (eds.)
AOSE 2000. LNCS, vol. 1957, pp. 235–251. Springer, Heidelberg (2001)



www.manaraa.com

Developing a Multiagent Conference

Management System Using the O-MaSE Process
Framework

Scott A. DeLoach

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

sdeloach@cis.ksu.edu

Abstract. This paper describes how the Organization-based Multiagent
Systems Engineering (O-MaSE) methodology can be applied to an ex-
emplar multiagent system, the Conference Management System. First,
a custom process for the CMS application is created using the O-MaSE
Process Framework. Then, each task identified in the O-MaSE compliant
process is performed and the appropriate models are generated. For the
CMS system, we begin by creating a Goal Model via the Model Goals
and Goal Refinement tasks. Once the Goal Model is complete, we create
an Organization Model to capture all the interfaces to external actors
and systems. After that, a Role Model is created to capture the func-
tionality and the logical architecture of the system. Next, based on the
Role Model, an Agent Class Model is created. The details of the agents
and protocols identified in the Agent Class Model are further refined into
several Protocol Models and Agent Plan Models.

1 Introduction

The purpose of this paper is to describe how the Organization-based Multiagent
Systems Engineering (O-MaSE) methodology [4] can be applied to a particu-
lar example multiagent system, the Conference Management System, which is
described earlier in the volume.

The Organization-based Multiagent System Engineering (O-MaSE) method-
ology is actually a process framework that helps process engineers to create
customized agent-oriented software development processes. O-MaSE consists of
three basic structures: (1) a metamodel, (2) a set of methods fragments, and (3)
a set of guidelines. The O-MaSE metamodel defines the key concepts needed to
design and implement multiagent systems. The method fragments are operations
or tasks that are executed to produce a set of work products, which may include
models, documents, or code. The guidelines define how the method fragments
are related to one another. Because O-MaSE is really a framework for creating
custom multiagent systems development processes and not a single process, the
first step is to define an appropriate O-MaSE compliant process. The O-MaSE

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 168–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Developing a Multiagent Conference Management System 169

compliant process described in this paper is presented in Section 2. Once our cus-
tom process is defined, we present each step of the process in Section 3. Finally,
we conclude in Section 4 with our conclusions and future work.

2 O-MaSE Process

The first step in using O-MaSE to define a CMS system is the creation of an
appropriate custom process for the CMS application using the O-MaSE Process
Framework [4]. As a detailed discussion of the task selection criteria is beyond
the scope of this paper, it should be pointed out that the CMS system is made up
of agents representing specific humans playing specific roles in the organization
and thus, there is no requirement for an autonomously adaptive system. Thus,
the definition of individual capabilities of the roles and agents are not required.

Fig. 1. CMS O-MaSE Compliant Process

The process defined for designing the CMS system is shown in Figure 1.
Assuming there exists some kind of system requirements or system definition,
we begin by creating a goal tree and refining it into a GMoDS Goal Model via
the Model Goals and Goal Refinement tasks. Once the Goal Model is complete,
we create an Organization Model to capture all the interfaces to external actors
and systems. Once the Organization Model is complete, it and the GMoDS Goal



www.manaraa.com

170 S.A. DeLoach

Model are used to create the initial Role Model. Based on the Role Model, an
Agent Class Model is created. The details of the agents and protocols identified
in the Agent Class Model are further refined into several Protocol Models and
Agent Plan Models. While we chose to define the Protocol Models based on the
Agent Class Model, we could have also defined the protocols after creating the
Organization Model or the Role Model, as each of those identifies protocols as
well.

3 Modeling CMS in O-MaSE

3.1 Goal Model

The first step in our O-MaSE compliant process is to create an initial Goal Model
that captures the essential requirements of the CMS system as defined in the sys-
tem definition or requirements documents. The initial Goal Model for the CMS
system is shown in Figure 2. The Model Goals task uses traditional AND/OR
refinement to decompose the top-level CMS goal, Manage submissions, into six
AND-refined subgoals: Get papers, Assign papers, Review papers, Select
papers, Inform authors, and Print proceedings. The UML aggregation no-
tation is used to represent AND-refinement while the UML generalization no-
tation is used to represent OR-refinement. Each goal in the model is annotated
by the keyword �goal�. All the subgoals except Review papers are further
decomposed into subgoals that define what must be accomplished in order to
achieve the given goal. For instance, the Select papers goal is AND-refined into
a Collect reviews goal and a Make decision goal. Notice that the Inform
authors goal is OR-refined into an Inform declined and Inform accepted
subgoals. Obviously, the subgoal used to satisfy the Inform authors goal is
based on the decision made whether to accept or reject the paper.

The Goal Refinement task takes the initial Goal Model and adds additional
information to capture the dynamism associated with the CMS system. Specifi-
cally, we refine our initial model into a model based on the Goal Model for Dy-
namic Systems (GMoDS) [6]. GMoDS introduces three concepts into AND/OR
goal modeling approaches to handle goal sequencing, the creation of goal in-
stances, and parameterized goals. Sequencing of goals is provided by goal prece-
dence, which specifies that one goal must be achieved before a second goal can be
achieved. Goal instances are created based on events that occur during system
operation. Goals without a specific trigger are created at system initialization,
while other goals are created when specific events occur. Finally, goals can be
parameterized to fully define what the purpose of the goal is. For instance, in the
CMS system, we have a goal to Review papers. However, this goal is ambiguous
until we specify which set of papers to be reviewed. Thus, we add a parameter
to the goal to specify the papers to be reviewed.

The GMoDS Goal Model for the CMS system is shown in Figure 3. The
GMoDS model has the same basic shape as shown in Figure 2, but with ad-
ditional arrows between goals showing precedence and goal triggering as well
parameters for several goals. In the Figure 2, precedence between goals is shown



www.manaraa.com

Developing a Multiagent Conference Management System 171

F
ig

.
2
.
C

M
S

A
N

D
/
O

R
G

o
a
l
M

o
d
el



www.manaraa.com

172 S.A. DeLoach

by an arrow labeled with the �precedes� keyword while triggers are represented
by arrows between goals with an event name and a set of parameters in the form
event(p1, ...pn). Reading Figure 3 we can see that the Collect papers goal
precedes both the Distribute papers and Assign papers goals. Thus, once
the Collect papers goal is achieved, the papers may be distributed and the
Partition papers goal (a sub-goal of Assign papers) can begin. The trigger
between Partition papers and Assign reviewers denotes that each time a
set of papers is created during the pursuit of the Partition papers goal, a new
goal is instantiated for that set. Once the Partition papers goal is achieved,
the pursuit of the Assign reviewers goal can begin on each of the Assign
reviewers goals. As an assignment is made, the assign(p,r) trigger creates a
new goal to Review papers for each paper set and reviewer assigned.

When all the Review papers goals have been achieved, the Select papers
goal can be pursued via its subgoals: Collect reviews and Make decision.
When the Collect reviews goal is achieved, then the Make decision goal can
be pursued. As a decision is made on each paper, a declined(p,a) or accepted(p,a)
event occurs. If a paper is declined, an Inform decline goal for that paper is
instantiated while if a paper is accepted, both an Inform accepted and Collect
finals goal is instantiated for that paper. Once all the Collect finals goals
are achieved, then the Send to printer goal can be pursued. Assuming the
Inform authors goals have been achieved, achievement of the Send to printer
goal achieves all the sub-goals and the overall system goal is achieved.

3.2 Organization Model

The Organization Model is created using the Model Organization task, which
takes as input the GMoDS Goal Model derived in the previous task. The aim of
this task is to identify system’s (which is referred to as the organization) inter-
faces with external actors. In the case of the CMS system (see Figure 4), the sys-
tem interfaces with the committee (including the PC chair and the reviewers),
the Authors, and the Printer. The various ways that the actors interact with the
system are modeled as protocols, which are represented by arrows from the ini-
tiator of the protocol to the responder. The initiator and responder of an protocol
must be either an external actor or the organization. The system is represented
as an organization, which is denoted using the �Organization� keyword.

As stated above, the CMS organization interacts with Authors, the PC chair,
Reviewers, and the Printer. Each of these are shown as actors in Figure 4.
Using the system description, the protocols required for interaction between the
organization and the actors are identified. In the CMS system, an Author sub-
mits papers to the system using the submitPaper protocol. After being reviewed,
the CMS notifies the Author whether their paper is accepted or rejected via the
informAuthor protocol. If the paper was accepted, the Author then submits the
final version of the paper using the submitFinal protocol. The PC chair ac-
tor works with the CMS by partitioning papers into sets via the partitionPaper
protocol and then assigns various reviewers to review those sets of papers via the



www.manaraa.com

Developing a Multiagent Conference Management System 173

F
ig

.
3
.
C

M
S

G
M

o
D

S
G

o
a
l
M

o
d
el



www.manaraa.com

174 S.A. DeLoach

selectReviewers protocol. Once the reviews are complete, the PC chair makes
the final selections via the selectPapers protocols. The Reviewers accept or
reject their assignments via the getOK protocol and submit their reviews via the
submitReviews protocol. Finally, the final papers are sent to the Printer for
printing via the printProceedings protocol.

Fig. 4. CMS Organization Model

3.3 Role Model

The Role Model is developed using the Organization Model and the GMoDS
Goal Model defined earlier in the process. This focus of the Role Modeling task
is to identify the roles required in the organization and their interactions (defined
via protocols) with each other. The actors from the Organization Model should
show up as actors in the Role Model and the protocols between the actors and
the organization must be mapped to protocols between those actors and specific
roles in the system. Thus, the Role Model is a refinement of the Organization
Model. In addition, each leaf goal in the GMoDS Goal Model must be assigned
to a role in the Role Model that can achieve it, as denoted by the �achieves�
keyword in the body of the role. Thus, each role should achieve at least one leaf
goal, although in general, a role may achieve multiple leaf goals.

The Role Model for the CMS system is shown in Figure 5. In the CMS
system, there are seven roles: the PaperDB, the Paritioner, the Assigner,
the PCreviewer, the ReviewCollector,FinalsCollector, and DecisionMaker.
The PaperDB role acts as the collection and distribution mechanism in the CMS.
Authors submit papers to the PaperDB, while the Partitioner, PCreviewer,
and FinalsCollector roles access the papers, abstracts, and final versions via
protocols with the PaperDB. When all the papers have been submitted, the PC



www.manaraa.com

Developing a Multiagent Conference Management System 175

chair interacts with the Paritioner role to look at the various abstracts and
assign them to groups to be assigned reviewers. Once this task is complete,
the PC chair interacts with the Assigner role to select reviewers to assign
to each set of papers. The Assigner role then interacts with the PCreviewer
role via the reviewPapers protocol, which interacts with the Reviewer via the
getOK protocol. The Reviewer then reviews the papers and submits them to
the PCreviewer role using the writeReviews protocol. The PCreviewer role
then sends the reviews to the ReviewCollector role. Once all the reviews have
been submitted, the PC chair interacts with the DecisionMaker role to select
papers for the conference. The status of the papers are relayed to their au-
thors by the DecisionMaker role via the informAuthors protocol. Once the
Author completes the final version, the paper is submitted to the PaperDB via
the submitFinal protocol. When all the final papers have been submitted, the
papers are then forwarded to the Printer from the FinalsCollector via the
printProceedings protocol.

3.4 Agent Class Model

Once the roles have been defined, the analysis phase is complete and the analysis
models are transformed into design models that more closely match the final
implementation form. For the CMS system, this includes creating an Agent Class
Model via the Model Agent Classes task. The goal of this task is to translate
the role model, which captures basic system functionality, into a form more
amenable to implementation. In short, this means mapping roles to agent classes.
The result of this mapping for the CMS system is shown in Figure 6. The roles
that each agent has been assigned to play are embedded in the body of the
agent classes and are prefixed with the keyword �plays�. The agent classes are
denoted by the �Agent� keyword.

While the assignment of roles to agents is made by the designer, typical
software engineering concepts such as coupling and cohesion should be used
to evaluate the assignment. In the CMS system, two agent classes play two
roles, while the other two classes play a single role each. The PCmember agent
has been assigned to play both the Assigner and Paritioner roles and thus
interacts with the PC chair. Likewise, the PCchair agent also plays two roles
– ReviewCollector and DecisionMaker – while also interacting with the PC
chair. The Referee agent plays the PCreviewer role and interacts with the
Reviewer, while the Database agent plays the PaperDB role and interacts with
the Authors and the Printer. Notice that the protocols between roles in the
Role Model have been mapped to protocols between the appropriate agents in
the Agent Class Model.

After the Agent Model is complete, the agent classes and protocols have
been identified, but not defined. The remaining two tasks – Model Protocols
and Model Plans – are used to define the low-level design of the individual
agents. The Model Protocols task is performed first, followed by the Model Plans
task.



www.manaraa.com

176 S.A. DeLoach

Fig. 5. CMS Role Model

3.5 Protocol Models

The goal of the Model Protocols task is to define the details of the protocols
identified in the Role Model and Agent Class Model. The Protocol Model defines
the protocol in terms of messages passed between agents or between agents and
external actors. As there were 13 protocols identified in the Agent Class Model
(Figure 6), we must define each of the 13 protocols with individual Protocol
Models. The protocols are modeled using the AUML Interaction Diagrams [5],
which allow us to specify message sequences, alternatives, loops, and references
to other protocols.

Due to space constraints, we will only present three of the 13 protocol mod-
els: reviewPapers, submitReviews, and retrievePapers. Figure 7 shows the
reviewPapers protocol, which defines the interaction between the PCmember
and Referee agents, which are specified by the �Agent� keyword (protocols
can also be specified between agents and actors using the same method). This
protocol is very simple. The PCmember sends a reviewpapers message with a



www.manaraa.com

Developing a Multiagent Conference Management System 177

Fig. 6. CMS Agent Model

list of paperIDs for the Referee to review. The Referee may respond by either
accepting or declining to review the set using the accept and decline messages
respectively.

Figure 8 shows the submitReviews protocol, which defines the interaction
between the Referee agent and the PCchair agent. In this protocol, the Referee
sends several reviews via a submit message to the PCchair followed by a done
message. There is no response by the PCchair.

Figure 9 shows the retrievePapers protocol, which defines a simple request
protocol between the Referee and Database agents. According to the protocol,
the Referee issues a request to the Database for a set of papers via a request
message. The Database simply responds with the appropriate set of papers in a
receive message.

3.6 Agent Plan Models

The last design models developed in our O-MaSE compliant process are the
Agent Plan Models. Basically, a plan represents a mean by which agents can
satisfy a goal in the organization, thus a plan can be viewed as an algorithm for
achieving a specific goal. Again, because there are four different agents defined
in the Agent Class Model, there should be at least four Agent Plan Models



www.manaraa.com

178 S.A. DeLoach

Fig. 7. CMS reviewPapers Protocol Model

Fig. 8. CMS submitReviews Protocol Model

Fig. 9. CMS retrievePapers Protocol Model



www.manaraa.com

Developing a Multiagent Conference Management System 179

developed, one for each agent. Depending on the internal architecture chosen
for each agent, we could develop multiple Agent Plan Models for each agent.
This might be the case when we wanted a unique plan for each role an agent
could play or if we could choose between multiple plans to achieve the same
goal. In either case, the agent architecture would be responsible for selecting the
appropriate plans and interleaving their execution if required.

O-MaSE plans are modeled using a finite state automata to specify a single
thread of control that defines the behavior that the agent should exhibit. As
such, each plan has a start state and an end state. All messages are sent
and received on state transitions. For the Plan Model, the syntax of the transi-
tions is [ guard ] receive(message,sender) / send (message,receiver).
The guard defines a boolean condition that determines if the transition is en-
abled. The receive(message,sender) is a message that is received from the
sender agent that enables the transition, while the send(message,receiver)
is a message sent to the receiver agent when the transition occurs. Messages
are specified in the form performative(p1...pn), where the performative is the
name of the message and p1...pn are the parameters of the message. Each part
of the transition is optional and a null transition may exist between two states.

Each state has a (possibly empty) set of actions that are executed sequentially
once the state is entered. Each action is represented in the form of a function that
returns a value. These actions may represent internal computations of the agent
or be part of interactions with objects in the environment. Transitions out of a
state are not enabled until all actions have returned their values. The parameters
to the actions, the action return values, and all parameters in messages in the
plan are considered variables within a single name space, thus a parameter X of
a message is the same as the return value of an action X.

Figure 10 shows the Plan Model for the Reviewer agent. The plan starts upon
receipt of a reviewpapers message from the PCmember agent. Immediately upon
receipt of the message, the agent sends a request message to the Database agent
to get the papers identified by the list of paper identifiers, paperIDs, and moves
into the Wait state. When the Database returns a list of the papers requested,
the plan moves into the Evaluate state where it interacts with its associated
Reviewer via the getOK action. If the Review does not agree to review the set
of papers, a decline message is sent to the PCmember agent and the plan ends.
However, if the Review does agree to review the set of papers, an accept message
is sent to the PCmember agent and the plan moves to the Review state. In the
Review state, the plan interacts with the Reviewer via the getSelectedPaper
and getReview actions. Every time a review is completed, the review is sub-
mitted to the PCchair agent via a submit message and the the list of papers
is reduced in size. Once the papers list is empty, the plan moves into the Done
state and immediately sends a done message to the PCchair agent.

As the Agent Plan Model implements the protocols identified in the Agent
Class Model and defined in the Protocol Models, it is critical that a Plan Model
be consistent with all Protocol Models that it is required to implement. Thus,
by looking at Figure 6, we can see that Referee agent must implement the



www.manaraa.com

180 S.A. DeLoach

Fig. 10. CMS Plan Model

reviewPapers, getOK, writeReview, retrievePapers and submitReview pro-
tocols. While the getOK and writeReview protocols interact with the Reviewer
actor and are implemented as action, we can analyze the reviewPapers,
retrievePapers and submitReview protocols with the Referee Agent Plan
Model to verify that they are indeed consistent.

4 Conclusion and Future Work

This paper has presented an example of an O-MaSE complaint process for the
Conference Management System example. After defining a custom process for
this example, we showed how to step through each of the tasks to create a set
of models that eventually resulted in a set of Agent Plan Model that describe
how to implement the set of agents required for the system. While the example
showed several of the main O-MaSE tasks and models, it did not include several
potentially powerful concepts supported by O-MaSE as defined in [4]. Specifi-
cally, we did not use the Define Roles, Model Domain, or Model Policies, tasks.
We also did not do detailed design that would have included the tasks of Model
Capabilities and Model Actions.

The approach we used also reflected a traditional approach to designing agent
systems. That is, we identified a set of roles and then designed specific agent
classes to perform those roles. While this approach is straightforward and is
very useful for the CMS system, it does not reflect the power of the O-MaSE
approach for modeling highly adaptive systems. By incorporating the notion of
capabilities within O-MaSE, we allow designers to design much more flexible and



www.manaraa.com

Developing a Multiagent Conference Management System 181

adaptive multiagent systems. Instead of assigning roles directly to specific agent
classes, we define roles in terms of the capabilities required to carry out that
role and agent classes in terms of the capabilities they posses. Role behavior is
then specified in terms of a Role Plan Model that uses its required capabilities
to implement the actions in the plan. By specifying roles and agents in terms of
capabilities required or possessed, the assignment of roles to specific agents can
be delayed until runtime. When a goal is instantiated that requires a specific
role, the agent that has all the required capabilities of the role can be selected
to play that role to achieve a specific goal.

We are continuing to add new tasks and models to O-MaSE to allow it to be
even more flexible and useful. We are currently encoding O-MaSE to be used in
the Eclipse Process Framework (EPF) tool [7], which allows designers to pick and
choose method fragments to create custom processes. While the EPF supports
the main concepts we need to define O-MaSE, we are looking into extending
EPF to allow us to formally verify that the custom process created is actually
O-MaSE compliant.

We are also developing agentTool III (aT3) [2] to support O-MaSE modeling.
aT3 is being developed by an Eclipse plugin and will be available at the aT3
web site. The Goal Model, Organization Model, Role Model, and Agent Class
Model were all created using a prototype of aT3.

Acknowledgments

This work was supported by grants from the US National Science Foundation
(0347545) and the US Air Force Office of Scientific Research (FA9550-06-1-0058).

References

1. DeLoach, S.A.: Engineering Organization-based Multiagent Systems. In: Garcia, A.,
Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS
2005. LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

2. DeLoach, S.A.: Multiagent & Cooperative Robotics Laboratory. agentTool III Home
Page (April 2007), http://agenttool.projects.cis.ksu.edu/

3. DeLoach, S.A., Mark, F.: Wood and Clint H. Sparkman, Multiagent Systems En-
gineering, The International Journal of Software Engineering and Knowledge Engi-
neering 11(3), 231–258 (2001)

4. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, O.W.H., Valenzuela, J.: A Customizable
Approach to Developing Multiagent Development Processes. In: Luck, M., Padgham,
L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 1–15. Springer, Heidelberg (2008)

5. Huget, M., Odell, J.: Representing Agent Interaction Protocols with Agent UML. In:
Proceedings of the Third international Joint Conference on Autonomous Agents and
Multiagent Systems. International Conference on Autonomous Agents, Washington,
DC, vol. 3, pp. 1244–1245. IEEE Computer Society, Los Alamitos (2004)

6. Miller, M.: A Goal Model for Dynamic Systems. Master’s Thesis, Dept. of Comput-
ing and Information Sciences, Kansas State University (2007)

7. The Eclipse Foundation. Eclipse Process Framework Project Home Page (April
2007), http://www.eclipse.org/epf/

http://agenttool.projects.cis.ksu.edu/
http://www.eclipse.org/epf/


www.manaraa.com

Tool-Supported Development with Tropos:

The Conference Management System Case
Study

Mirko Morandini, Duy Cu Nguyen, Anna Perini,
Alberto Siena, and Angelo Susi

Fondazione Bruno Kessler - IRST
Via Sommarive, 18
38050 Trento, Italy

{morandini,cunduy,perini,siena,susi}@itc.it

Abstract. The agent-oriented software engineering methodology Tro-
pos offers a structured development process and supporting tools for
developing complex, distributed systems.

The objective of this paper is twofold: first, to illustrate the use of
Tropos to develop a Multi-Agent System, performing basic analysis and
design activities, code generation and testing, with the support of a set
of tools; second, to enable the comparison with other, tool-supported,
agent-oriented software engineering methodologies through a description
of the main steps of these activities and of excerpts of the resulting
artefacts, with reference to a common case study, namely, the Conference
Management System case study.

1 Introduction

Many Agent-Oriented Software Engineering (AOSE) methodologies have been
proposed over the last years [13,7]. This fact motivated research on how to
compare and evaluate these methodologies, with the purpose of pointing out
differences and complementarities, and of giving criteria for selecting the most
appropriate methodology, for a given development scenario [13,5].

While this research field is becoming more mature, a need is emerging for de-
tailed guidelines when applying a methodology along core phases in the software
development process, and for supporting tools. This is considered a crucial step
towards the adoption of AOSE methodology by industry.

The Tropos methodology, proposed in [3], is an agent-oriented methodology
for developing complex, distributed systems. A peculiarity of Tropos is that
it adopts a requirement driven approach to software development, recognizing
a pivotal role to the modelling of domain stakeholders and to the analysis of
their goals, before generating a design for the system-to-be. System design then
consists in specifying software agents who have their own goals and capabilities
that are intended to support the fulfilment of stakeholder goals.

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 182–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Tool-Supported Development with Tropos 183

Further research on the Tropos methodology focused on its application in
developing specific classes of applications, as for instance distributed knowl-
edge management systems [23]. Moreover, extensions of its modelling language
have been proposed to support the analysis of crucial issues in distributed sys-
tems, such as trust and security [10]. Several tools have been built as well.
TAOM4e, for supporting a model-driven, agent-oriented approach to software
development [19,17], the T-Tool [9], for performing model-checking of Tropos
specifications, the GR-Tool for supporting formal reasoning on goal models [12],
multi-agent planning for supporting the selection among alternative networks of
delegations [4].

The main objectives of this paper are: first, to illustrate how to use Tropos
to develop a Multi-Agent System (MAS), performing basic analysis and design
activities, generating code and performing testing on it, with the support of a
set of tools; second, to enable the comparison with other tool-supported AOSE
methodologies through a description of the main steps of these activities and
of excerpts of the resulting artefacts, with reference to a common case study,
namely, the Conference Management System (CMS) case study [6].

The paper is structured as follows. Section 2 recalls basic development ac-
tivities in Tropos and gives a short description of the tools that support them.
Requirements analysis is described in Section 3, system design is described in
Section 4, code generation and testing in Section 5. Considerations emerged dur-
ing the development of the CMS case study are discussed in Section 6. Finally,
conclusion and future work are presented in Section 7.

2 Tropos Development Process and Tools

The software development process in Tropos is structured in five main phases,
namely: early requirements analysis that focuses on the understanding of the
existing organizational setting where the system-to-be will be introduced; late
requirements that deals with the analysis of the system-to-be; architectural de-
sign that defines the system’s global architecture in terms of subsystems; detailed
design that specifies the system agents micro-level; implementation that concerns
code generation according to the detailed design specifications.

This development process is model-based, that is, requirements and design
models are core artefacts. They are built using a conceptual modelling lan-
guage, derived from the i* framework [24]. This modelling activity, called Agent-
Oriented (AO) modelling in Fig. 1, spans the first four phases in the software
development process. Basic concepts of the modelling language are those of ac-
tor, goal, plan and dependency for goal achievement.1 AO modelling can be per-
formed using the TAOM4e modelling tool [19]. The tool has been extended to
support automatic code generation from the Tropos specification into JADE [1]
or Jadex [20] MAS, by exploiting a mapping between the Tropos meta-model
concepts and the target implementation languages constructs [18,15].

1 UML activity and sequence diagrams may be used as well for detail design in Tropos.



www.manaraa.com

184 M. Morandini et al.

Fig. 1. Development Process Phases: Activities and Supporting Tools

Fig. 2. Architecture of TAOM4e and eCAT

Other tool-supported analysis techniques are available in Tropos , such as vali-
dation of requirements specification via model-checking (see T-Tool [9]) or formal
analysis on goal models of requirements and system design (see GR-Tool [12]).
These types of analysis are particularly useful in case of complex models. They
will be not described in this paper.

Goal-Oriented testing has been recently proposed as a complementary activity
to AO modelling and code generation activities [16]. The basic idea is that
of deriving test cases directly from the AO specifications produced along the
development process with the aim to support testing and validation along the
process phases. In this paper we will illustrate agent and integration testing as
supported by the eCAT tool [16].

A high-level architecture of the tooled environment is described below, while
the use of the tools during the development of the CMS system will be illustrated
in the following sections.

2.1 TAOM4e and Code Generation Functions

TAOM4e2 is a graphical Tropos modelling framework, which supports modelling
in all phases of the Tropos process. It is realized as a plug-in for the Eclipse3

project and extends existing plug-ins, as shown in Fig. 2: the EMF plug-in4 offers

2 http://sra.itc.it/tools/taom4e
3 http://www.eclipse.org
4 http://www.eclipse.org/emf

http://sra.itc.it/tools/taom4e
http://www.eclipse.org
http://www.eclipse.org/emf


www.manaraa.com

Tool-Supported Development with Tropos 185

a modelling framework and code generation facility for building tools and other
applications based on a model specification described in XMI; the Graphical
Editing Framework (GEF) plug-in5 allows to create a graphical editor from an
existing application model; the Tefkat plug-in6 provides a rule-based language
to implement model to model transformation.

The Tropos metamodel has been implemented on top of EMF (TAOM4e
model), GEF is used to realize the graphical representation of the model and the
different views on it (TAOM4e platform), whereas the Tefkat plug-in is used to
transform top-level plans and their decompositions into UML activity diagrams.
The resulting diagrams can be edited using any UML2 editor and further detailed
with sequence diagrams, which define communication protocols among agents.

Fig. 3 shows a screen-shot of the TAOM4e GUI.
The TAOM4e modeller is enriched with TAOM4e generators to derive skele-

tons of code for the JADE and Jadex agent platforms, directly from an UML
specification of detailed design artefacts or from a Tropos goal model. TAOM4e
generators include UML2JADE, t2x, and Tropos2UML. Tropos2UML can be used
to generate UML activities diagrams from Tropos goal model, while UML2JADE
can generate JADE agent code from UML activity and sequence diagrams that
specify Tropos plans (capabilities), details are given in [17].

The part of an agent that is responsible for choosing the right plans at run-
time in order to reach the desired goals is called knowledge level. In an agent’s
GM , the knowledge level consists of goals and their decomposition, contributions,
dependencies to other agents and means-end relations to plans. These are inputs
for the t2x (namely Tropos to Jadex ) tool. The tool generates skeletons for agents
following the BDI architecture, and they are executable on the Jade BDI agent
platform [21]. The mapping between Tropos goal model elements and Jadex
construct is described in [18,14].

The generated code skeleton implements the reasoning part of a software
agent. It consists of an Agent Definition File (ADF), in XML format, which
defines goals, plans, beliefs and messages for every system agent in the GM .
The single plans can be implemented in Java files, which can be associated to
the elements in the ADF.

2.2 eCAT

eCAT7 implements our method for automated continuous testing of MAS, sup-
porting a goal-oriented testing approach [16]. The tool facilitates test suites
derivation from goals analysis and generates semi-automatically test suites from
goal analysis diagrams produced with TAOM4e. It also provides GUIs to help
human testers specifying test inputs and oracles. Moreover, eCAT can evolve
and generate more test inputs during the course of testing, and run these test
inputs continuously to test the MAS. In this way, the MAS under test is tested
more thoroughly and is stressed more extensively.
5 http://www.eclipse.org/gef
6 http://tefkat.sourceforge.net
7 http://sra.itc.it/people/cunduy/ecat

http://www.eclipse.org/gef
http://tefkat.sourceforge.net
http://sra.itc.it/people/cunduy/ecat


www.manaraa.com

186 M. Morandini et al.

Fig. 3. A snapshot of the TAOM4e’s GUI including: the tool’s button menu (top);
the project’s artefacts browser (left); model views, e.g. the Early requirements Actor
Diagram (centre); the modeller’s palette (right)

eCAT consists of three main components: Test Suite Editor, Autonomous
Tester Agent , and Monitoring Agents. Its operation is described as follows:

– Based on agent specifications and design (e.g. outputs of AO modelling with
TAOM4e), the Test Suite Editor generates initial test suites and then pro-
vides a GUI for end-users to edit them.

– The Autonomous Tester Agent takes those test suites and/or generates
other test suites randomly. It then continuously executes them against the
multi-agent system under test. During the course of test execution, the Au-
tonomous Tester Agent can evolve test suites by applying a mutation and
evolutionary technique in order to create more test suites, which aim at
revealing more bugs.

– The Monitoring Agents assist the Autonomous Tester Agent during testing.
By monitoring events and interactions happened in the multi-agent system
and its environment, it provides useful information to the Autonomous Tester
Agent in order to judge if a test passes or fails, and a trace to the found bug
when failed.

3 Requirements Analysis

Starting software development in Tropos using TAOM4e requires to create
a “Tropos project” that will collect all the artefacts generated during the



www.manaraa.com

Tool-Supported Development with Tropos 187

development process, such as models, actor and goal diagrams that represent
views on these models, agent code, test cases and logs generated during test
execution.

Two models are built in the requirements analysis phases: the Early Re-
quirements and the Late Requirements models. They are in charge of de-
scribing the domain setting as is and the same domain once the system-to-be
will have been introduced, respectively.

Fig. 4. Early Requirements of CMS: Goal Diagram

A guide to start building the Early Requirements model is given by the fol-
lowing analysis questions: Who are the stakeholders in the domain? What are
their goals and how are they related to each other? What are there strategic
dependencies between actors for goal achievement?

The Conference Management System domain is modelled in terms of its main
stakeholders (actors), namely papers’ authors, by the actor Author, the confer-
ence’s program committee and its chair, by the PC and the PC Chair actors
respectively, papers reviewers by the actor Reviewer and the proceedings pub-
lisher by the actor Publisher. Stakeholders’ goals are then identified and, for every
goal, the analyst can decide, on the basis of the domain documentation, if the
goal is achievable by the actor itself or if the actor has to delegate it to another
actor, revealing a dependency relationship between the two actors, such as in
the case of the dependency between Author and PC for the achievement of the



www.manaraa.com

188 M. Morandini et al.

goal Publish proceedings. An analogous analysis can be carried on for the domain
tasks and resources, according to the Tropos modelling process described in [11].

In practice, using TAOM4e, the Early Requirements model is built by creating
a first Actor Diagram into the project and adding actors, goals, etc. into the
model using the graphical editor. Fig. 3 shows a view of the Early Requirements
model (actor diagram) for the CMS case study. Circles represent actors, ovals
the goals, rectangles the resources and the double arrows links between pairs
of actors the dependencies between the two actors for the achievement of the
goal or resource connected by the two dependency links. For every entity in the
model, some properties, such as formal properties related to the Formal Tropos
language [8], can be specified in the tool, according to the metamodel defined
in [2].

AO modelling can be further pursued by decomposing a goal into sub-goals
and by exploring the possible alternatives to achieve a goal. Alternatives are
represented by OR-decomposition and characterized by multiple contributions.
At this stage, also non-functional requirements can be represented as soft-goals.
Choosing one alternative with respect to another, leads to different soft-goals
achievement. By this way, it is possible to compare different alternatives and
select the most appropriate one.

In Fig. 4, an Early Requirements goal diagram is shown. This diagram rep-
resents a (partial) view on the model. Only two actors of the model, PC and
PC Chair, are represented with two goal dependencies, Manage conference and
Decide deadlines. The goal Manage conference is analyzed from the point of view
of its responsible actor, PC Chair, through an AND decomposition into sev-
eral goals: Get papers, Select papers, Print proceedings, Nominate PC and Decide
deadlines. Moreover, softgoals can be specified inside the actor goal diagram,
with their contribution relationships to/from other goals (see for example the
softgoal Conference quality and the positive contribution relationship from the
softgoal Better quality papers).

Goal diagrams can be dynamically created in TAOM4e. The tool allows, for
every actor in the model, to open (close) their goal diagrams, which appear as
balloons attached to the relative actors. This allows to dynamically visualize the
internal perspective of each single actor. Notice also that the tool supports the
analyst in identifying the elements to be analyzed. For instance, goals that have
been delegated to an actor through dependency relationships, appears automat-
ically in the actor goal diagrams, as for instance in the case of the PC Chair actor
and the goal Manage conference in Fig. 4.

The results of the first phase are the Early Requirements model and the set
of Actor and Goal diagrams produced during its specification.

The Late Requirements phase is intended to capture the changes in the domain
caused by the introduction of the system-to-be and the actual properties of
the system. The phase starts by introducing in the domain model a new actor
representing the system-to-be.

A partial view of the resulting model is shown in Fig. 5 where the CMS System
actor is represented. In practice, the analyst creates a new diagram inside the



www.manaraa.com

Tool-Supported Development with Tropos 189

Fig. 5. Late Requirements: Actor Diagram

Fig. 6. Late Requirements: Goal Diagram

project that, again, is a view on the model under construction, and adds the
new actor. specifying its property of being a system actor.8

The driving analysis questions here can be stated as follows: what are the goals
that can be assigned to the system-to-be and which dependencies can be redirected
from domain actors to the system?

According to these questions, several existing or new dependencies can be
respectively redirected and established between the other actors in the domain
and the new CMS System actor, such as the new goal dependencies Coordinate
conference and Manage proceedings.

These goals are then analyzed from the system actor perspective. In Fig. 6,
the relative goal diagram is shown. The goals Coordinate conference and Man-
age proceedings are decomposed in new sub-goals. Moreover, operative plans are

8 The tool can be customized to show system actors with a different color with respect
to domain actor to facilitate model reading.



www.manaraa.com

190 M. Morandini et al.

specified and associated to the system goals as means to achieve them (means-
ends relationships), such as in the case of the goal Manage decision that is oper-
ationalised by the plans accept and reject.

The resulting artefacts of this phase are the extended domain model and all
the Late Requirements diagrams defined by the engineer. The model will be the
input for the Design phases.

4 Design

The Late Requirements model is the basis for the definition of the actual system
architecture. It is comprised by both the overall multi-agent system structure,
and the detailed design for each single agent of the system.

The Architectural Design artefact consists of the system’s overall structure:
it is represented in terms of its sub-systems and of their inter-dependencies.
Adopting the multi-agent system paradigm, sub-systems are agents that can
act independently and communicate with others through message passing. In
order to build the architectural design, the engineer will refine the system actor
by introducing sub-actors, which are responsible for actually carrying out the
system’s top goals. The aim is to split the complexity of the system, which is
described in terms of high-level goals, into smaller components, easier to design,
to implement and to manage. During this refinement activity, the engineer has to
face possible alternative decompositions. Among alternative decompositions, one
that results in sub-systems with stronger internal cohesion and lower coupling
should be selected.

TAOM4e gives the possibility to create an Architectural Design diagram for
every system actor defined in Late Requirements Analysis. In this diagram, a
dashed box associated to the system actor represents the system. In the box,
new system agents can be created. Subsequently, a single goal, the whole goal
tree or parts of them can be delegated from the system to the new system agents.

Fig. 7 displays the resulting architectural design diagram for the CMS System
actor. Analyzing this actor’s goal model (see fig. 6), the engineer should be able
to extract a proper decomposition into sub-actors. In our example we introduce
four new actors. The Conference Manager manages the top-level goal coordinate
conference, delegated to the system by the program committee actor PC. The
Paper Manager deals with the goal support paper submission from the domain
actor Author, moreover some internal agents depend on it to manage papers. To
do this, the agent depends on authors to get papers. Similarly, to the Review
Manager and Proceedings Manager the corresponding goals are delegated.

Once the sub-actors have been modelled, together with the goals and tasks
delegated to them, the next step consists in analyzing and detailing the goal
model of these new agents. Similarly to the late requirements analysis phase,
the engineer “opens” the balloon of an agent or creates a new view for the
agent under consideration, to analyze the goals delegated to it. Goals can be
decomposed and plans can be added as means for achieving goals.

Fig. 8 shows an excerpt of the goal models for two of the sub-actors, namely
Paper Manager and Proceedings Manager. We focus on the analysis of the goal



www.manaraa.com

Tool-Supported Development with Tropos 191

Fig. 7. Architectural Design: CMS System Decomposition into Sub-actors

Fig. 8. Architectural Design: Simplified Goal Model of two Sub-actors of CMS

get proceedings delegated from the Publisher actor, and the resulting dependency
between the two system actors. The delegated goal is AND-decomposed into sub-
goals, which are either operationalised by defining a plan or further decomposed.
To be achieved, one of the sub-goals, deal with proceedings, causes the Proceedings
Manager to depend on the Paper Manager for the goal collect finals.

Plans are defined as means to achieve the goals that are not delegated to
other agents. Defining more than one plan for a goal (as for the goal format
proceedings), leads to modelling alternatives. One possible way to format the
proceedings is to recompile them, an alternative way is to control the style of
posted papers. However, the applicability of the plans can depend on availability
of resources (the source files in this example) and the selection of alternatives



www.manaraa.com

192 M. Morandini et al.

can be guided by looking at positive and negative contributions to softgoals, for
example consistent formatting (not shown in the figure).

Opening the internal view of the PaperManager actor, the engineer can now
find the goal collect finals that has been previously delegated to it. This goal can
now be decomposed to sub-goals and operationalised by plans. Furthermore,
plans can also be detailed, by decomposing them in AND and OR to more
concrete sub-plans. See for instance the AND decomposition of the plan store
finals in DB into the sub-plans retrieve finals, control format, store in DB, in Fig. 8.

The system design can be completed with the Detailed Design artefact
that specifies in detail the plans associated to each agent goal and the agent
interaction protocols.

UML activity diagrams are automatically generated from the Tropos plan
diagrams, by model transformation, using the Tropos2UML tool. The resulting
diagrams can be further detailed and modified with any UML2 editor able to
import files in XMI format. Sequence diagrams are associated to activities that
contribute to the definition of the communication protocols used. Starting from
these diagrams, JADE Behaviour code can be generated. These modelling steps
are not used in the case study and therefore will be not further detailed in this
paper, we focus instead on BDI code generation from goal models.

5 Code and Test Suites Generation

The goal models created in the design phase are the basis for the implementa-
tion of software agents. Using the t2x tool, Jadex agent definition files can be
generated by selecting a system agent in the GM and starting the automatic
generation process. Regarding the present case study, code was generated for
the two system agents ProceedingsManager and PaperManager.

The generated code implements the agent’s reasoning mechanisms needed to
select correct plans at run-time to achieve desired goals. The t2x tool analyses a
GM exploring goal decomposition trees. The goal hierarchy is mapped to Jadex
goals along with Java files containing the decomposition logic, while plans are
implemented in Java files and connected to the relative goals by a triggering
mechanism. These goal decomposition graphs are also stored in the agent’s be-
lief base, together with all contributions to softgoals and dependencies to other
agents. Therefore, at run-time the agent can control its behaviour by navigating
the modelled goal graph.

The generated code skeleton can be executed on the Jadex platform. It ex-
hibits a basic behaviour corresponding to the designed goal model and can be
modified and customized as needed. In particular, it can be extended with code,
generated by UML2JADE, corresponding to the activity diagrams that can be
specified at detailed design.

As an example, Fig. 9 briefly shows the generated Jadex code, in XML format,
of the agent Paper Manager. This fragment of code corresponds to the Tropos
goal model on the top-left side of the figure, and its reasoning trace at run-time
is presented on the bottom-left corner of the figure.



www.manaraa.com

Tool-Supported Development with Tropos 193

Fig. 9. Simplified goal diagram for PaperManager, part of generated Jadex XML code,
and example Jadex run-time agent instance with activated goals and plans, visualized
by the Introspector tool provided by the Jadex platform

Tester
Agent

REQUEST(collect_final_in_DB...)

REPLY

Paper
Manager

Branch

not-null

Fig. 10. Example of a Test Scenario. An excerpt of the XML specification is depicted
in the right part.



www.manaraa.com

194 M. Morandini et al.

Following the goal-oriented testing methodology presented in [16], eCAT gen-
erates test suites for every elementary relationship, i.e. relationship between a
goal and a plan. The underlining idea is to use the test suite as a guideline for the
Autonomous Tester Agent to trigger the goal in order to verify the execution
of the corresponding plan. In the case of CMS, eCAT takes the architectural
diagram, Fig. 8, as an input and generate a set of test suites for each agent.
Developers can choose when generating test suites which communication proto-
cols the Autonomous Tester Agent will use to communicate with the agents of
CMS. As an example, Fig. 10 illustrates a test suite that tests whether the agent
PaperManager is able to fulfil the goal collect finals in DB or not. The graphical
part of the figure gives an intuitive understanding of the test suite, formalized
in XML: when executing test, the Autonomous Tester Agent will send a request
that has “REQUEST” as its performative and the name of the goal collect finals
in DB as message content to Paper Manager. Then, it will wait for a reply and
decide to finish the test or to continue with other requests.

6 Discussion

For sake of simplicity we have not described iterations along different phases
that usually occur in the development process. For instance, iterations along
the Early and Late requirements phases, in order to explicit domain entities
that are relevant when specifying the impact of the system-to-be in the original
organizational setting, and that may have not been captured in the initial Early
Requirements model. Tropos allows model refinement through iterative steps.
This process is managed manually since, up to now, TAOM4e does not provide
versioning functions. Moreover, formal techniques to support goal analysis and
consistency checking of the requirements model have not been exploited.

We shall mention also the fact that the CMS case study offers interesting
problems that have not been considered in this paper, due to lack of space. For
instance, non-functional requirements, which may emerge in case of large-size
conferences and may require more complex MAS architecture, should be taken
into account.

Moreover, rules and norms that characterize the CMS domain were not mod-
elled in the case study. For example, rules for manging possible conflicts between
the reviewers and the authors of papers to be reviewed should have been mod-
elled. We also have not addressed the rules related to the instances, such as those
related to the number of reviews for every paper or the policy of distribution of
the papers to the reviewers. Some of these rules can be represented in Tropos in
the form of Linear Temporal Logics constraints imposed on the entities of the
model via the Formal Tropos language. As pointed out in Section 3, TAOM4e
allows for the representation of these constraints in the form of annotated prop-
erties on the model entities. Moreover, starting from the Early requirements
phase, the formal annotations give the possibility to formally check the model
via model checking techniques as described in [19]. An alternative approach to
norm modelling with an AO approach is described in [22].



www.manaraa.com

Tool-Supported Development with Tropos 195

7 Conclusion and Future Work

This paper illustrated how to use the Tropos methodology and a set of supporting
tools, to develop a MAS for the Conference Management System case study. In
particular, analysis, design, code generation and testing activities have been
illustrated together with examples of the resulting process’s artefacts.

Work is ongoing to consolidate the tool-supported development process in
Tropos . In particular, we are deserving particular effort to the integration of
requirements and design modelling with the Goal Oriented testing methodology.
Moreover, we are studying mechanisms for supporting automatic traceability
between process artefacts, e.g. design artifacts and code.

References

1. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: A FIPA Compliant agent frame-
work. In: Practical Applications of Intelligent Agents and Multi-Agents, pp. 97–108
(1999)

2. Bertolini, D., Novikau, A., Susi, A., Perini, A.: TAOM4E: An Eclipse ready tool
for Agent-Oriented Modeling. Issue on the development process. Technical report,
Fondazione Bruno Kessler - irst (2006)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (2004)

4. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing cooperative IS: Exploring and eval-
uating alternatives. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 533–550. Springer, Heidelberg (2006)

5. Dam, K., Winikoff, M.: Comparing Agent-Oriented Methodologies. In: Proceedings
of the 5th Int’l Bi-Conference Workshop on AgentOriented Information Systems
(AOIS), Melbourne, Australia (2003)

6. DeLoach, S.A.: Modeling organizational rules in the multi-agent systems engi-
neering methodology. In: Cohen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS
(LNAI), vol. 2338, pp. 1–15. Springer, Heidelberg (2002)

7. Federico Bergenti, M.-P.G., Zambonelli, F. (eds.): Methodologies and Software En-
gineering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Springer, Heidelberg (2004)

8. Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., Traverso, P.: Specifying and an-
alyzing early requirements in tropos. Requir. Eng. 9(2), 132–150 (2004)

9. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early re-
quirements specifications in Tropos. In: IEEE Int. Symposium on Requirements
Engineering, Toronto, CA, August 2001, pp. 174–181. IEEE Computer Society
Press, Los Alamitos (2001)

10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security require-
ments through ownership, permission and delegation. In: Proceedings of the 13th
IEEE International Requirements Engineering Conference (RE 2005) (2005)

11. Giorgini, P., Mylopoulos, J., Perini, A., Susi, A.: The Tropos Methodology and
Software Development Environment. In: Giorgini, P., Maiden, N., Mylopoulos, J.,
Yu, E. (eds.) Social Modelling for Requirements Engineering, MIT Press, Cam-
bridge (to appear)



www.manaraa.com

196 M. Morandini et al.

12. Giorgini, P., Mylopoulous, J., Sebastiani, R.: Goal-Oriented Requirements Analysis
and Reasoning in the Tropos Methodology. Engineering Applications of Artificial
Intelligence 18(2), 159–171 (2005)

13. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea
Group Inc. (2005)

14. Morandini, M.: Knowledge Level Engineering of BDI Agents. Master’s thesis, Dept.
of Computer Science, University of Trento, Italy (2006),
http://dit.unitn.it/∼morandini/resources/ThesisMirkoMorandini.pdf

15. Morandini, M., Penserini, L., Perini, A., Susi, A.: Refining goal models by evaluat-
ing system behaviour. In: 8th International Workshop on Agent-Oriented Software
Engineering, AAMAS (May 2007)

16. Nguyen, D.C., Perini, A., Tonella, P.: A goal-oriented software testing method-
ology. In: Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, Springer,
Heidelberg (2007)

17. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Intentions
to Software Agent Implementations. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

18. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Intentions
to Agent Capabilities. In: Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2007), Hawaii, USA, ACM Press, New
York (2007)

19. Perini, A., Susi, A.: Agent-Oriented Visual Modeling and Model Validation for
Engineering Distributed Systems. Computer Systems Science & Engineering 20(4),
319–329 (2005)

20. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a bdi-
infrastructure for jade agents. EXP - in search of innovation (Special Issue on
JADE) 3(3), 76–85 (2003)

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In: Bor-
dini, J.D.R., Dastani, M., Seghrouchni, A.E.F. (eds.) Multi-Agent Programming,
pp. 149–174. Springer Science, Business Media Inc. (2005)

22. Siena, A.: Engineering Normative Requirements. In: Proceedings of the First In-
ternational Conference on Research Challenges in Information Science, RCIS 2007,
Ouarzazate, Morocco, pp. 439–444 (2007)

23. Souza, R.G.-S., Perini, A.: Analyzing requirements of knowledge management sys-
tems with the support of agent organizations. Journal of the Brazilian Computer
Society (JCBS) 11(1), 51–62 (2005), ISSN 0104-6500

24. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Department of Computer Science, University of Toronto
(1995)

http://dit.unitn.it/~morandini/resources/ThesisMirkoMorandini.pdf


www.manaraa.com

The Prometheus Design Tool – A Conference
Management System Case Study

Lin Padgham, John Thangarajah, and Michael Winikoff

School of Computer Science, RMIT University, Melbourne, Vic 3000, Australia
{lin.padgham,john.thangarajah,michael.winikoff}@rmit.edu.au

Abstract. This paper describes how the Prometheus Design Tool (PDT) is used
to support the Prometheus methodology for designing agent systems. This is done
by using an exemplar system that has been used previously in the literature, and
is briefly described earlier in this volume. This paper presents the development of
a design for this system using PDT. By using different tools and methodologies to
design the same example system it is easier to observe the similarities and differ-
ences between both the methodologies and the tools supporting them. Prometheus
and PDT, like the other systems presented in this volume, has specific strengths
and features that have been developed to support the design process. However
it is also evident that there is a great deal of commonality across agent method-
ologies that should give developers confidence that there is in fact an emerging
agreed understanding as to the important aspects of designing and developing
agent systems.

1 Introduction

A large number of methodologies for the analysis and design of agent systems have been
proposed [1,2]. Some of the more well-known and arguably better developed method-
ologies include PASSI [3], MaSE [4], Tropos [5], Gaia [6], and Prometheus [7].

The fact that there are a substantial number of agent development methodologies to
choose from can be confusing for developers who simply want direction in using the
technology. Detailed working of a common example can provide assistance in under-
standing both the commonalities and the differences between approaches. This paper
presents a design for a conference management system (based on the presentation of
[8]), which has been developed using the Prometheus methodology [7] and PDT, the
Prometheus Design Tool [9]. Because tools are crucial to use of a methodology for
designing any real system, we focus on the design process as supported by PDT.

Key aspects of Prometheus include:

– It provides detailed guidance with specific techniques and heuristics for performing
steps in the design process; PDT supports and helps structure these steps.

– It is intended to support the detailed design of agent internals as well as the structure
and interactions of the agents as a system. It supports (though is not limited to)
design of Belief-Desire-Intention (BDI) agents;

– It aims to strike a balance between defined structures, which support some auto-
mated reasoning, and free text or diagrams which allow designers freedom.

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 197–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

198 L. Padgham, J. Thangarajah, and M. Winikoff

– It covers (to some extent), all phases of development: specification, design, imple-
mentation, and testing [10] and debugging [11];1

– It is designed to scale to large designs (through the use of a range of abstraction
mechanisms, such as protocols and capabilities);

The methodology has been developed over more than 10 years as a result of working
with industry partners who are building agent systems and agent development tools. It
has also been continually refined and developed through teaching both undergraduate
and postgraduate students as well as running industry seminars. The tool support has
arisen out of the need to provide this at a reasonable level for building even relatively
small systems. For larger systems it is essential in order to maintain consistency even
of such simple things as naming. The Prometheus Design Tool (PDT) is freely avail-
able from http://www.cs.rmit.edu.au/agents/pdt/ tool, running under
Java 1.5.

The rest of this paper presents the development of the conference management sys-
tem using PDT and illustrates the way in which the tool supports the different steps in
the methodology. All figures in the paper are generated by PDT.

2 Prometheus Design Tool Overview

The Prometheus design methodology consists of 3 stages: system specification (which
could be considered as a pre-design stage), architectural design, and detailed design.
Figure 1) provides an overview of these three stages and the artifacts produced in each.
In developing a Prometheus design the developer produces the design artifacts for each
of these stages, which are represented in the upper left pane of PDT (see figure 2).
The graphical models produced at each stage of the process are listed in this upper left
pane, and are displayed and developed in the upper right pane. These are the core static
models of a Prometheus design, and in figure 1 are in the centre of each stage/row.

Each entity in a Prometheus design also has a detailed descriptor with a series of
fields, some of which are free text, and others of which are structured. These descrip-
tors are displayed and developed in the bottom right pane of PDT (figure 2), and are
indicated on the right hand side of each stage in figure 1. The particular descriptor on
display is determined by selecting the relevant entity icon in the graphical model pane,
or by selecting the entity from a list of entities in the bottom left pane (figure 2).

The left hand side of each stage in figure 1 shows design artifacts which capture mod-
els of the dynamics of a system. The primary artifacts here are scenarios, protocols and
process diagrams. The details of scenarios and protocols are developed and displayed
in pop-up windows available from the “Entities” menu at the top of the tool.2 Icons
representing these entities appear in the figures in the main graphical models pane. The
notation used in PDT is shown in figure 3. The symbols used are somewhat idiosyn-
cratic (as are those in other toolkits) and we are currently working with some of the
major groups in the area, to agree a more standardised graphical notation.

1 The testing and debugging are not yet integrated into the publically available version of PDT.
2 Process diagrams are not currently supported.

http://www.cs.rmit.edu.au/agents/pdt/


www.manaraa.com

The Prometheus Design Tool – A Conference Management System Case Study 199

Fig. 1. Overview of Prometheus Methodology and Design Artifacts

Fig. 2. Overview of PDT



www.manaraa.com

200 L. Padgham, J. Thangarajah, and M. Winikoff

Fig. 3. Entity Notation

In the following sections we illustrate the process of design using PDT, showing
the artifacts produced for the example Conference Management system. We present
the design linearly covering the models in the order they are provided in PDT. How-
ever the design process is always iterative, especially within a particular stage, where
typically one moves back and forth between the various models. There is also often
some iteration between stages and if required, diagrams from previous stages should be
revisited and revised as appropriate. One of the features of PDT is that it does enforce a
degree of consistency between models, and so entities introduced in one model or stage,
are often automatically propagated to other models or stages where appropriate. This
assists the developer in maintaining a consistent and coherent design.

3 System Specification

It is not unusual for the initial ideas for a system to be captured very briefly, possibly in
a few paragraphs. During System Specification this description must be elaborated and
explored, to provide a sound basis for system design and development. In our exam-
ple the Conference Management System was described as a system with four “distinct
phases in which the system must operate: submission, review, decision, and final pa-
per collection. During the submission phase, authors should be notified of paper receipt
and given a paper submission number. After the deadline for submissions has passed,
the program committee (PC) has to review the papers by either contacting referees and
asking them to review a number of the papers, or reviewing them themselves. After the
reviews are complete, a decision on accepting or rejecting each paper must be made.
After the decisions are made, authors are notified of the decisions and are asked to
produce a final version of their paper if it was accepted. Finally, all final copies are
collected and printed in the conference proceedings.” [8]. We modified this slightly to
assume a structure similar to the AAMAS reviewing structure, where Program Commit-
tee members are the reviewers of papers, while Senior Program Committee members
make recommendations based on the reviews.

Typically, using Prometheus, the development of the System Specification begins
with identifying the external entities3 (referred to as actors) that will use or interact in
some way with the system, and the key scenarios around which interaction will occur.
This is done in PDT using the ‘Analysis Overview Diagram’. In figure 4 we identify
Author, Printer, PCchair, PCmember and SPCmember (SPC = Senior PC) as the entities
that will interact with the system. We associate them to the four main scenarios which
correspond to the main functionality of the system.

3 These may be humans or other software systems.



www.manaraa.com

The Prometheus Design Tool – A Conference Management System Case Study 201

Fig. 4. Initial Analysis Overview Diagram

We then refine this diagram by identifying the percepts that are input to each sce-
nario, and the actions produced by the system for each scenario, linking them to the
appropriate actors as shown in figure 5. For example, an author submits a paper as a
percept (input) to the system and the system performs an action of sending an acknowl-
edgement back to the author. The analysis overview diagram thus defines the interface
to the system in terms of the percepts (inputs) and actions (outputs).

The next step is to specify the details of the scenarios that we identified in the analysis
overview diagram. A scenario is a sequence of structured steps where each step can be
one of: goal, action, percept, or (sub)scenario. Each step also allows the designer to
indicate the roles associated with that step, the data accessed, and a description of the
step. These preliminary goals, roles and data that are identified are used to automatically
propagate information into other aspects of the design. As steps are defined, the relevant
entities are created if they do not yet exist. Figure 6 illustrates the steps of the paper
reviewing scenario where the first step is a goal to invite reviewers, associated with
the Review Management role and accesses the ReviewerDB (a data structure to store
reviewer details, their preferences, and paper assignments).

By default PDT creates a goal for every scenario, with the same name as the sce-
nario. This is the goal which the scenario is intended to achieve. The name of the
goal can be changed, and if desired the same goal can be associated with multiple
scenarios, although this is not usually the case at the most abstract level of the Analy-
sis Overview diagram. The goals, created from the scenarios are automatically placed
into the ‘Goal Overview Diagram’, where goal hierarchies further describing the appli-
cation are developed. For each goal, we identify its sub-goals by asking the question
“how can we achieve this goal?”. Figure 7 shows the goals of the conference man-
agement system. Sub-goals are either “AND”4 or “OR”5 branches. By default they are
“AND” branches.

4 Each sub-goal is a part of the parent goal.
5 Sub-goals are alternative approaches to achieving the parent goal.



www.manaraa.com

202 L. Padgham, J. Thangarajah, and M. Winikoff

Fig. 5. Refined Analysis Overview Diagram

Fig. 6. Scenario example - Paper Review

There is typically substantial iteration between scenario development and goal hi-
erarchy development until the developer feels that the application is sufficiently de-
scribed/defined. At this stage goals are grouped into cohesive units and assigned to
roles which are intended as relatively small and easily specified chunks of agent



www.manaraa.com

The Prometheus Design Tool – A Conference Management System Case Study 203

Fig. 7. Goal Overview Diagram

Fig. 8. System Roles Diagram

functionality. The percepts and actions are then also assigned to the roles appropri-
ately to allow the roles to achieve their goals. This is done using the ‘System Roles’
diagram.



www.manaraa.com

204 L. Padgham, J. Thangarajah, and M. Winikoff

For example, Figure 8 shows that the ‘Assignment’ role is responsible for the goals to
collect preferences (from the reviewers) and assign papers (to the reviewers). To achieve
these goals the role needs the input (reviewer info) and reviewer preferences (prefs) and
should perform the actions of requesting preferences from reviewers (request prefs) and
giving out the paper assignments (give assignments).

4 Architectural Design

The next stage is the architectural design where we specify the internal composition of
the system. The main tasks here are to decide the agent types (as collections of roles)
and to define the agent conversations (protocols) that will happen in order to realise the
specified goals and scenarios. Decisions regarding grouping of roles into agents are cap-
tured in the ‘Agent-Role Grouping Diagram’. Figure 9 shows the roles of assigning pa-
pers to reviewers (Assignment) and managing the review process (review management)
as being part of a Review manager agent. A number of issues must be considered in
determining how to group roles into agents, including standard software engineering
issues of cohesion and coupling. The relationships of roles to data are also considered
in determining role groupings. The Data Coupling anA. gent Acquaintance diagrams can
assist the designer in visualising these aspects.

Fig. 9. Agent-Role Grouping Diagram

Once decisions have been made about how roles are grouped into agents, informa-
tion can be propagated from the role specifications, to show which percepts and ac-
tions are associated with which agents. This information is automatically generated
into the ‘System Overview Diagram’ which, when completed, provides an overview of
the internal system architecture. What must be done to complete this overview is to de-
fine interactions between the agents (protocols), and to add any shared data. Figure 10
shows the system overview for our conference management system design. Observ-
ing the ‘Papers manager’ agent we can see that it receives papers (percept) from
authors and provides an acknowledgment (action) to them. It interacts with the ‘Se-
lections manager’ agent via the ‘selection decision’ protocol to be able to send authors



www.manaraa.com

The Prometheus Design Tool – A Conference Management System Case Study 205

Fig. 10. System Overview Diagram

Fig. 11. Selection Decision Protocol Diagram

a notification of accept/reject (action). It also interacts with the ‘Publishing manager’
agent via the ‘proceedings finalisation’ protocol to provide final versions of papers to
publish the proceedings.

In order to link agents with the appropriate protocols, the protocol structure must be
specified using the protocol specification window (available from the Entities menu, or
by double clicking the icon in the diagram). The structure of message flows is specified
using a textual notation for describing a modified AUML2 [12] protocol specification.
This can then be displayed as an AUML2 style figure. Any messages (or other entities)
specified in the protocol, but not yet existing in the design, are created automatically.



www.manaraa.com

206 L. Padgham, J. Thangarajah, and M. Winikoff

Links are created between agents and protocol symbols, based on the specification.
Prometheus modification of AUML2 allows percepts, actions and actors to be part of
the protocol specification in addition to messages and agents. This often provides a
better understanding of a conversation structure than showing only messages between
agents.

Figure 11 shows the AUML2-like diagram of the ‘selection decision’ protocol,
where interactions involve three agents and four actors (identified by the dotted squares
in the diagram). Percepts (which always originate with an actor and go to an agent) are
written as “>percept name<”, and actions (from an agent to an actor) are written as
“<action name>”. Because conversations, or protocols, do include external actors, it is
possible to have a protocol connected to only one agent. An example of this in figure 10
is the choose reviewers protocol where the review manager interacts with reviewers to
give out assignments.

5 Detailed Design

The detailed design stage deals with design of the agent internals, to allow the agent to
achieve the goals associated with it (via its roles and associated goals) and to engage in
the interactions specified. A generic stage of detailed design describes agents in terms of
capabilities, or modules. These capabilities are then finally specified in terms of plans
and events, which are of necessity more specific to the implementation paradigm or
platform, than the preceding steps. Specification of process diagrams is not currently
supported in PDT.

The detailed design section (bottom left of figure 12) consists of a list of agent
overview diagrams, one for each agent. Each agent has underneath it a list of capability
overview diagrams, one for each capability included in the agent. Often the capabili-
ties of the agent will (at least initially) correspond to the roles that were assigned to it,
though roles may also be split into multiple smaller capabilities, or merged into a larger
capability. For example in this case the Review manager agent had two roles assigned
to it (Assignment and review management) and it has three capabilities: ‘Reviewer reg-
istration’, ‘Papers assignment’ and ‘Review Collection’.

All the entities that were associated with the agent in the system overview diagram
are propagated to the agent overview diagram, including the individual messages from
protocols associated with the agent. Entities in an agent/capability overview diagram
that are propagated, form part of the interface to the internals of the agent/capability
and are shown as “faded” icons. These interface entities must then be connected to
internal capabilities or plans defined to use or generate them. The designer needs to
ensure that all the actions, percepts, messages, and data access is accounted for. For
example, the ‘Reviewer registration’ capability handles the percept ‘review info’ and
modifies data in the ‘ReviewerDB’.

Capabilities, which are specified using the ‘Capability Overview Diagram’ contain
the plans which actually do things. Similarly to the agent overview diagram, percepts,
messages, actions and data are propagated into this diagram and plans or (sub) capa-
bilities are created to handle the relevant entities. A dotted line from a percept or mes-
sage to a plan indicates that the percept/message is the trigger of the plan. Figure 13,



www.manaraa.com

The Prometheus Design Tool – A Conference Management System Case Study 207

Fig. 12. Agent Overview Diagram for Reviewer manager

Fig. 13. Capability Overview Diagram for Paper asignment

outlines the details of the ‘Paper assignment’ capability. The ‘assign-papers-PC’ plan is
triggered by a message to assign the papers (assign papers), reads data from ‘Review-
erDB’ and ‘PapersDB’, assigns papers to PC members (give assignments), records the
assignments in ‘ReviewerDB’ and, when all assignments are complete, sends a ‘papers-
assigned’ message.

Plan descriptors allow for additional information such as a description of the plan, a
context condition specifying the conditions under which this plan is applicable, a failure
condition under which the plan may fail, a failure recovery procedure if the plan fails,
and a description of the plan body where the developer may specify pseudocode that
can be easily translated to code.

As the details of a design are developed it is very common that one recognises the
need for new percepts, actions, messages, and so on. This will inevitably lead to the
need to revise slightly the models developed at an earlier stage. PDT supports this by



www.manaraa.com

208 L. Padgham, J. Thangarajah, and M. Winikoff

automatically introducing any new percepts and actions identified, into the system
overview and analysis overview diagrams. Examples of this in the current design are
the timer that is the trigger to ask reviewers to indicate which of the submitted papers
they would like to review, and the reject ass paper which allows a reviewer to reject
an assignment with which they have a conflict. These were identified during detailed
design, and as a result were introduced into the System Overview, Analysis Overview
and System Roles diagrams. In the System Overview the connections to the appropriate
agents were also able to be made. In this case the decision was made to not leave the
timer percept in the Analysis Overview or System Roles diagrams, as it did not add to
understanding at System Specification level. However the reject ass paper does lead to
a fuller understanding of the system functionality and so was connected to the review
scenario and the Review management role. The protocol choose reviewers should then
also be updated to show the role that these two new percepts play in the interaction
around assigning reviewers to papers.

Once the detailed design is completed it is possible to generate skeleton (JACK)
code from the Tools menu. The developer can then add to this code using a text editor.
In order to maintain consistency between code and design, any additions or deletions of
entities, or relationships between entities should be made in the design tool, and code
regenerated on this basis. Code that is added outside that which is generated by PDT is
maintained between design code iterations.

6 Features

PDT is more than simply a drawing tool for development of design diagrams. The tool
maintains constraints based on the metamodel, and also provides support to prevent
such simple errors as generation of unintended entities due to typographical errors. The
user interface will continuously prevent the following sorts of errors:

(i) Definition: it is not possible to have references to non-existent entities, since cre-
ating a reference will create the entity if it does not exist, and when an entity is
deleted all references to it are deleted as well.

(ii) Naming: it is not possible for two entities to have the same name, for example a
goal and a plan both called ‘assign-Papers-PC’.

(iii) Simple type errors: for example, it is not possible in PDT to connect an action and
another action.

(iv) Scope constraints: for example, it is not possible to create an incoming percept to
a plan without that percept also being (a) shown on the system overview diagram,
and (b) shown as incoming to the agent whose plan it is.

(v) Violations of interface declarations: for example, if an agent is specified as reading
a belief set, then it is not possible to create an arrow from one of the agent’s plans
to the belief set. Similarly, if an agent specifies that it only sends a message, then
its plans cannot receive the message, and PDT does not allow the user to violate
this constraint.

In addition PDT has a number of additional features available from the tools menu
shown in Figure 14 Some of the additional features that the Prometheus Design Tool
provides include:



www.manaraa.com

The Prometheus Design Tool – A Conference Management System Case Study 209

– Crosschecking - this is a consistency check that is performed on demand, generating
a list of errors and warnings that can be checked by the developer. Examples of a
warning are writing of internal data that is never read, while an example of an error
is a mismatch between the interaction protocol specified between two agents and
the messages actually sent and received by processes within those agents.

– Code generation - The detailed design specification is close to code, and the tool
currently provides a code generation feature that generates skeleton code of the
system in the JACK agent language [13]. The skeleton code can then be completed
by the developers. The tool supports repeated code generation from the design,
preserving any user edited code segments.

– Report generation - One of the very useful features of the tool is its ability to gen-
erate an HTML design document. This document contains both figures and textual
information, as well as an index over all the design entities. The report can also be
customized such that only certain entities are included in the report. The tool can
also save printable images of the various diagrams (in PNG format).

– Auto save and Backup - PDT automatically saves the current project at a set time
interval (which can be changed) and also allows for creating backup files, which
save the current version into a different file specified by the user.

Fig. 14. Tools in PDT

PDT is also available with an Eclipse plugin, enabling it to be used within a broader
IDE supporting aspects such as syntax highlighting, version management and so on. De-
tails are available from the PDT home page at www.cs.rmit.edu.au/agents/
pdt.

7 Future Work

There is a range of ongoing research on extending and refining the Prometheus method-
ology, and many aspects of this work are gradually being integrated into PDT, as they
reach an appropriate stage of maturity, and as their usefulness is verified. These include:



www.manaraa.com

210 L. Padgham, J. Thangarajah, and M. Winikoff

– Testing support: we have developed automated incremental unit testing based on
the design model as specified in PDT [10]. This is currently being integrated into
the publically available version of PDT and should be available relatively soon.

– Debugging support: there is substantial work on interactive debugging support
based on the design models specified in PDT [14,11]. This will eventually be inte-
grated into PDT.

– Interaction development: There has been work on alternative approaches to devel-
oping agent interactions, which are more goal centric, and less message centric [15]
than AUML2. This may be included into PDT as an alternative approach to inter-
action specification and development, which also includes detailed design of agent
tasks.

– Agent organisations: We have worked with Carles Sierra on integrating an organ-
isation design phase based on Islander, into Prometheus and PDT [16]. Facilities
for integrating this design phase into PDT, using the Islander design tool, will be
available soon.

– Model based production of fully executable code: A variation of PDT extends the
granularity of the detailed design, as well as introducing additional specifications,
in order to allow automated production of a fully functional system [17]. Aspects
of this work will be incorporated into PDT soon.

In addition to incorporating ongoing research in Agent Software Engineering, into
PDT, we are also continually upgrading the tool based on feedback from users. Some
improvements currently in process include:

– Functionality to allow exploration of different alternatives during the design pro-
cess, on “sketchpad” pages. This will make the ‘Data coupling Diagram’ and ‘Agent
Acquaintance Diagram’ more useful as well as extending flexibility generally.

– Importing and exporting of existing designs to facilitate reuse and group work.
– Incorporation of existing approaches to support data design more explicitly.

We also hope to work closely with developers of other Agent Software design tools
and methodologies to try and integrate our efforts to provide simpler access for industry
developers and others outside the specialised community.

References

1. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group Publishing
(2005)

2. Bergenti, F., Gleizes, M.-P., Zambonelli, F.: Methodologies and Software Engineering for
Agent Systems. The Agent-Oriented Software Engineering Handbook. Kluwer Academic
Publishers, Dordrecht (2004)

3. Burrafato, P., Cossentino, M.: Designing a multi-agent solution for a bookstore with the
PASSI methodology. In: Proceedings of the Fourth International Bi-Conference Workshop
on Agent-Oriented Information Systems (AOIS-2002), Toronto (2002)

4. DeLoach, S.A.: Analysis and design using MaSE and agentTool. In: Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001) (2001)



www.manaraa.com

The Prometheus Design Tool – A Conference Management System Case Study 211

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi Agent Sys-
tems 8(3), 203–236 (2004)

6. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3) (2003)

7. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley, Chichester (2004)

8. DeLoach, S.A.: Modeling organizational rules in the multi-agent systems engineering
methodology. In: Proceedings of the 15th Canadian Conference on Artificial Intelligence,
pp. 1–15 (2002)

9. Padgham, L., Thangarajah, J., Winikoff, M.: Tool support for agent development using the
prometheus methodology. In: Cai, K.-Y., Ohnishi, A., Lau, M.F. (eds.) Proceedings of the
Fifth International Conference on Quality Software (QSIC 2005). Workshop on Integration
of Software Engineering and Agent Technology (ISEAT), sep 2005, pp. 383–388 (2005)

10. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent systems. In: 2nd
International Working Conference on Evaluation of Novel Approaches to Software Engi-
neering (ENASE-07), pp. 10–18 (2007)

11. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using design
artifacts: The case of interaction protocols. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2002) (2002)

12. Winikoff, M.: Defining syntax and providing tool support for Agent UML using a textual no-
tation. International Journal of Agent-Oriented Software Engineering 1(2), 123–144 (2007)

13. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents - Components
for Intelligent Agents in Java. Technical report, Agent Oriented Software Pty. Ltd, Mel-
bourne, Australia (1998), http://www.agent-software.com

14. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the prometheus
methodology. Journal of Engineering Applications in Artificial Intelligence 18(2) (2005)

15. Cheong, C., Winikoff, M.: Hermes: Implementing goal-oriented agent interactions. In: Pro-
ceedings of the Third international Workshop on Programming Multi-Agent Systems (Pro-
MAS) (July 2005)

16. Padgham, C.S.J.T.L., Winikoff, M.: Designing institutional multi-agent systems. In:
Padgham, L., Zambonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 84–103.
Springer, Heidelberg (2007)

17. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven component-based development
framework for agents. Computer Systems Science & Engineering 4(20) (2005)

http://www.agent-software.com


www.manaraa.com

Developing a Conference Management System

with the Multi-Agent Systems Unified Process:
A Case Study

Danilo Santos, Marcelo Blois Ribeiro, and Ricardo Bastos

FACIN - PUCRS, Av Ipiranga 6681, Porto Alegre, RS, 90619-900, Brazil
dsantos@inf.pucrs.br, {blois,bastos}@pucrs.br

Abstract. Many methodologies appeared in the latest years to deal with
multi-agent systems complexity and special development requirements.
Each methodology focuses in certain aspects of multi-agent systems de-
velopment and use different case studies to prove their effectiveness. In
order to compare their characteristics it is necessary to use a single
case study that requires a complex and distributed solution. This pa-
per presents the development of a very well-known multi-agent systems
case study - the Conference Management System - with the Multi-agent
Systems Unified Process (MASUP).

1 Introduction

Multi-Agent Systems are gaining attention in the software development area.
The quick growth of multi-agent systems development relies on the belief that
the agent paradigm is appropriate to explore the possibilities offered by open
distributed systems such as the Internet [1]. Due to the growing interest in agent
technology in the context of the software engineering, many methodologies were
created to support agent-oriented systems development.

An agent-oriented methodology should allow the designers to model the agents
common goals and the society workflow. The most natural way to view business
process is as a collection of autonomous, problem solving agents which interact
when they have interdependencies [2].

In this paper a multi-agent solution to the Conference Management Sys-
tem (CMS) [3] will be presented using the Multi-agent Systems Unified Process
(MASUP) [4]. The paper aims to present how MASUP captures specific agency
characteristics such as organizational rules to create the design of an agent-
based solution ready to be implemented. This paper is structured as follows.
Section 2 briefly presents MASUP through its phases, models and artifacts.
Section 3 shows the artifacts produced by the application of MASUP in the
Conference Management System. Section 4 discusses some specific aspects on
the case study such as the organizational rules mapping, coordination rules rep-
resentation and some implementation issues. The latest section presents the con-
clusion and future work.

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 212–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

Developing a Conference Management System with MASUP: A Case Study 213

2 Multi-Agent Systems Unified Process (MASUP)

MASUP is a RUP [5] extension that focuses on multi-agent systems development.
The methodology main purpose is to systematically identify the applicability of
an agent-oriented solution during the modeling phases [6]. MASUP has the Re-
quirements, Analysis and Design disciplines. The agent solution identification
occurs on the analysis and design disciplines through a heuristic over activity
diagrams. After the identification that an agent solution is appropriate for the
problem at hand, MASUP proposes different diagrams to capture agent char-
acteristics. It is important to notice that the methodology is fully compatible
with RUP and thus the non-agent part of the system can be modeled using the
traditional RUP techniques. Figure 1 shows the artifacts generated in MASUP
grouped by discipline models.

Fig. 1. MASUP models and artifacts



www.manaraa.com

214 D. Santos, M.B. Ribeiro, and R. Bastos

MASUP is being used by under-graduate and graduate in university courses
on multi-agent systems and also by researchers in their work every time an
agent-oriented solution should be modeled. Since 2005 ate least 10 projects used
MASUP offering important information on its practical usage and improvement
opportunities.

3 Modeling Organizational Rules in MASUP

This section presents MASUP application in the CMS [7] showing how it struc-
tures the solution for the problem from the requirements to the design phases.
CMS is an open multi-agent system which supports international conferences
paper reviewing management. This kind of system requires the coordination of
several individuals and groups. In the original paper, the authors identified seven
organizational rules involving the agents in CMS: (i) there must be at least three
reviewers for each paper; (ii) a reviewer can not review the same paper more than
once; (iii) a paper author does not review his own paper; (iv) a paper author
does not collect reviews of his own paper; (v) if a paper is received, it should
eventually be reviewed; (vi) a paper must actually be received before a review
can be submitted; and finally, (vii) there be at least two reviews before a paper
can be accepted or rejected. The complete system modeling using MASUP can
be found at http://semanticore.pucrs.br/masup/cms.

3.1 Requirements Workflow

At the Requirements phase it is necessary to identify the people and the func-
tionality involved in the system. For the CMS this discipline generated a use case
diagram with 5 actors and 7 use cases (Figure 2). At this stage it is impossible
to know if the system should be built using software agents or not.

MASUP uses use cases detailed description and/or activity diagrams for each
use case realization. The activity diagram technique allows you to write brief
descriptions of each activity state, which should make the textual specification
of the workflow obsolete. Here, you need to be sensitive to your audience and
the format in which they expect the specification [12]. In this work we are using
both notations in order to show how rules can be identified in each one. To keep
MASUP demonstration into the paper’s size restrictions only the Assign Paper
use case will be detailed. Table 1 presents the Assign Paper detailed description.

In the use case detailed description the rules section is used to capture all
business rules for the requirements being elicited. This use case must clearly
take into account the rule identified as (i). The rules indicated are required in
the description step facilitating their further usage on other diagrams. The rule’s
ID must be used throughout the methodology and thus should not be replicated
on the other diagrams.

The activity diagram for the Assign Paper use case showed in figure 3 is the
regular UML diagram with a simple annotation over the decision element in
order to identify if the decision is derived from a rule (business rule) or not



www.manaraa.com

Developing a Conference Management System with MASUP: A Case Study 215

Fig. 2. Use case diagram

(regular consistency checking). This representation allows diagram traceability
and checking. These rules will be later used on other diagrams in order to specify
which agent role is responsible to guarantee the rule application.

3.2 Analysis Workflow

After the requirements capture it is necessary to create analysis class diagrams to
identify the classes needed for use case realization. Five classes were identified for
CMS: paper, assigner, reviewer, review record and results record. In this phase
it is possible to check if an agent-solution is suitable for the problem and in
which proportion it should be applied (which use cases). A heuristic based on
decision making aspects of actors activities in the activity diagram is used for
this purpose. It checks all the actors’ activities in the activity diagrams. The
designer must ask himself if the activity involves decision making capabilities
in the actor. If it does, he must investigate if the decision making logic can be
modeled computationally. If it can, he must shift the activity from the actor’s
swimlane to the system’s swimlane. This provokes the other activities, directly
related to the shifted one, to adapt their specification. The objects connected to
these activities may be impacted and turned into roles in the MAS redesigned
activity diagram. These roles will have at least the responsibilities indicated by
the activities’ specification.

Redesigning the Activity Diagrams to Include Analysis Classes. The
analysis classes were included in the activity diagrams generated previously as
objects that are produced and consumed in each activity. It is necessary to
repeat this step for all the activity diagrams. This is a fundamental step since the
heuristic used for the agent-oriented solution identification is highly dependable
on the classes produced and consumed by each activity. Figure 4 presents the
analysis diagram containing the system entities.



www.manaraa.com

216 D. Santos, M.B. Ribeiro, and R. Bastos

Table 1. Assign Paper use case detailed description

Identification: 2

Use case name: Assign paper

Actors: Assigner

Preconditions: Papers partitioned

Postconditions: Papers assigned

EVENTS TYPICAL SEQUENCE

ID ACTOR ACTION ID SYSTEM ACTION

MAIN SECTION

1 Request papers.

2 Show partitioned papers.

3 Select paper.

4 Save selection.

5 Request reviewers.

6 Show reviewers.

7 Select reviewer.

8 Save the number of reviews it reviewer is respon-
sible for.

9 Verify if there are at least three reviewers se-
lected for the paper. (i)

10 Confirm assignment.

11 Assign paper to reviewer.

12 Verify if there are more papers to be assigned.

ALTERNATIVE SEQUENCE

Sequence ID Alternative ID Action/alternative answer

9a 1 There are not three reviewers for the paper se-
lected. (i)

2 Return to step 7 in the main section.

12a 1 There are more papers to be assigned.

2 Return to step 3 in the main section.

RULES

ID Description

(i) There must be at least three reviewers for each paper.

Identifying Agent Roles from Use Case Realization. Each activity dia-
gram redesigned in the previous step must be inspected using MASUP heuristic
in order to find role candidates among the objects represented. Those objects
are than marked as roles using UML stereotype notation for future usage. If an
UML diagram contains roles the UML activity diagram is redesigned to capture
agency characteristics.

For instance, the activity Select Reviewer in the activity diagram Assign
Paper (Figure 3) requires decision making capabilities from the actor repre-
sented as Assigner in the swimlane. This indicates that an agent could play a
role related to this activity to automate the decision-making process. Since the
activity is considered for automation, it must be transferred to the system and
the actor’s decision criteria must be formalized. The objects linked with the



www.manaraa.com

Developing a Conference Management System with MASUP: A Case Study 217

Fig. 3. Assign Paper activity diagram

agentified activity are candidates to be turned into agent roles. If an object is
named as simple resource it should be renamed to indicate the role that deals
with that resource. In MASUP we use the Handler termination for this purpose.
In the example, since paper is a resource it is not interesting to have a role
named paper. Because of this we used the paperHandler identification in the
redesigned UML activity diagram (Figure 5). In the redesigned UML activity
diagram, the relationship between a role and an activity must be named with
UML stereotypes. If a role manages an activity the stereotype << responsible
for>> is used and if the role participates in a negotiation to perform an activity
the stereotype used is << participate in >>.

Applying the heuristic on all diagrams produced in the requirements phase
it was possible to identify four roles for CMS: paperHandler, reviewer, assigner
and resultsHandler.

Role Specification. Each role identified in the activity diagrams must be de-
tailed in terms of attributions and restrictions. These restrictions include the
organizational rules related with the multi-agent system defined in the require-
ments phase. The organizational rules not related to the roles should be captured



www.manaraa.com

218 D. Santos, M.B. Ribeiro, and R. Bastos

Fig. 4. Analysis Diagram containing the system entities

Fig. 5. Assign Paper redesigned UML activity diagram

in the object-oriented portion of the system which will be modeled using the reg-
ular RUP disciplines and further integrated with the agent-oriented one.

All CMS rules should be modeled in the multi-agent part of the system. The
role paperHandler found in the Assign Paper redesigned activity diagram has
as its attribution the negotiation process to assign papers to reviewers. In this
assignment the agent who is playing this specific role must take into account
that he must accept at least three reviewing proposals for each paper (rule (i)).
The roles specification for paperHandler, reviewer, assigner and resultsHandler
are presented respectively in tables 2, 3, 4 and 5.

Identifying Agents. Although the designer may aggregate roles into agents
freely, it is a good practice to combine the roles sharing common knowledge in a
single agent. In other words, roles that consume and produce the same resources
will be aggregated in the same agent. For CMS four agents were identified: Paper-
HandlerAgent plays the paperHandler role, the AssignerAgent plays the assigner
role, the ReviewerAgent plays the reviewer role and the ResultsHandlerAgent plays



www.manaraa.com

Developing a Conference Management System with MASUP: A Case Study 219

Table 2. PaperHandler role specification

Role: PaperHandler

Use Case Activity Attributions Restrictions

Assign Paper Assign at least
three reviewers.

- It negotiates and ac-
cepts the proposal for
the paper to be assigned
to reviewers.

- It accepts at least three
proposals (i).

Partition Pa-
per

Partition papers. - It negotiates and ac-
cepts the proposal for
the paper to be parti-
tioned to assigners.

- Paper abstracts subject
must be considerate in the
negotiation.

Make Deci-
sion

Evaluate papers
in ascending or-
der.

- It negotiates and ac-
cepts to evaluate a pa-
per. - Notify result to the
author.

- Paper is not own (iv). -
There are at least two re-
views (vii).

Table 3. Reviewer role specification

Role: Reviewer

Use Case Activity Attributions Restrictions

Assign Paper Assign at least
three reviewers.

- It negotiates and ac-
cepts to review a paper.

- Must have the skills to re-
view a paper.

Review Paper Show papers. - Present received pa-
pers.

- Just the received papers
will be presented (vi).

Review Paper Verify if the pa-
per is already re-
viewed

- Verify if the paper
was already reviewed
him/herself.

- Reviewer doesnt review
the same paper more than
once (ii).

Review Paper Verify if it is own
paper

- Verify if it is own paper. - Reviewer does not review
his own paper (iii).

Review Paper Verify more pa-
pers received

- Verify more papers re-
ceived.

- If a paper is received,
it should eventually be re-
viewed (v).

the resultsHandler role. It was not identified knowledge sharing among roles and
thus we used a 1-to-1 mapping between roles and agents.

Defining the Agent Society. MASUP has a diagram to represent the agent
society showing communication and authority relationships between the agents.
The Agent Class Diagram shows the society related to CMS (figure 6). One Pa-
perHandlerAgent may communicate with many AssignerAgents as well as many
ReviewerAgents. The AssignerAgents or ReviewerAgents decide if it is appro-
priate to answer PaperHandlerAgent’s requests based on the matching between
the request interests and the agents’ expertise. One PaperHandlerAgent may
also communicate with one ResultsHandlerAgent in order to send paper reviews
and to receive if the paper it handles was accepted or not for publishing. Figure 6



www.manaraa.com

220 D. Santos, M.B. Ribeiro, and R. Bastos

Table 4. Assigner role specification

Role: Assigner

Use Case Activity Attributions Restrictions

Partition Pa-
per.

Partition papers. - It negotiates and ac-
cepts to assign a paper.

- Must have the skills to as-
sign a paper.

Table 5. ResultsHandler role specification

Role: ResultsHandler

Use Case Activity Attributions Restrictions

Make Deci-
sion.

Evaluate papers
in ascending or-
der.

- It evaluates and accepts
papers evaluation.

also presents the organizational rules linked with the reviewer role (ii, iii, v, vi)
and the organizational rules that apply to the agent’s interactions as (i), (iv)
and (vii).

3.3 Design Workflow

The purpose of design workflow is to adapt the analysis results to the constraints
imposed by the implementation. In the design workflow MASUP has activities
to define the agent interactions and how they will be mapped to implementation
structures. Each interaction between agents showed in figure 5 (paper partition
assignment, paper review assignment, results requisition) will be detailed in an
AUML extended sequence diagram. MASUP does not force the use of any specific
implementation platform. Because of this, it uses the notion of infrastructure
services to map the implementation platform services, showing how the designed
agents will interact with them.

Specifying Agent Interactions Scenarios. The relationships in the Agent
Class Diagram show that interactions between the agents must occur in a certain

Fig. 6. Agent Class Diagram



www.manaraa.com

Developing a Conference Management System with MASUP: A Case Study 221

time during the system execution. The interaction scenarios are represented in
MASUP using the AUML Extended Sequence Diagram [8]. Figure 7 presents
the interaction scenario for Assign Paper. Due to space limitations just one
part of the scenarios is shown. The other dialogs were suppressed but follow the
same general template. The PaperHandlerAgent sends a broadcast message to all
ReviewerAgents with the agent’s id and name and the paper to be assigned. The
interested ReviewerAgents send a response with the conversationId, the agent’s
id and name, their skills (representing the agents expertise) and the number of
papers they can review. Finally, the PaperHandlerAgent accepts at least three
reviewing proposals (i) and sends a message to the chosen ReviewerAgents. The
others ReviewerAgents do not receive a message and wait for a timeout in the
communication.

Fig. 7. Assign Paper AUML extended sequence diagram (paper review assignment)

Fig. 8. Agent Class Specification for the PaperHandlerAgent

Complementing the Agent Class Specification with the Agents’ Com-
municationActs. The interaction scenarios define the communication protocols
used by the agents. These protocols are composed by the interaction interfaces.
It is necessary to complement the agent class specification with these interfaces



www.manaraa.com

222 D. Santos, M.B. Ribeiro, and R. Bastos

for an agent to communicate with the others. Figure 8 presents the agent class
specification for the PaperHandlerAgent completed with its interaction protocol.
This specification describes all the elements that must be implemented in an agent
giving a synthetic view of the agent to guide the programmers during the MAS
implementation. The other agents have to be specified in the same way.

4 Discussion

Traceability is important issue on any software development methodology. MA-
SUP provides traceability guidance for developing each artifacts based on some
previously developed. MASUP treats the integration between the organization
and the information system. MASUP does not have a diagram to represent the
agent organizational workflow and cooperation rules. It does provide support
for rule identification from the requirements phase and their mapping in the
artifacts produced in the analysis and design phases.

MASUP naturally identify two types of rules: rules derived from the business
rules in the requirements phase (usually annotated in the use case description
steps) and coordination rules (usually identified in the pre and post conditions
of use cases detailed description). Since MASUP does not assume that an agent-
oriented solution is suitable for a problem, it uses a hybrid approach combining
agent-oriented modeling and conventional OO modeling. In this paper, only the
agent-oriented part of the system was considered and modeled.

Not all the organizational rules will be implemented in the agent-oriented
portion of the system and thus must be indicated in the non-MAS one. The
integration between the agent-oriented and non-agent-oriented parts of a system
is done in the design phase when mapping the agents to infrastructure services
such as database management systems, web servers and so on. This mapping is
based on the resources consumed and produced by agents which are classes of
the non-MAS design architecture.

It is possible to demonstrate that MASUP is a very straightforward method-
ology with three main differences from the other methodologies in the literature
such as Prometheus [9], Tropos [10] and MaSE [11]: (i) it does not assume that
an agent solution is suitable for a problem and it uses an heuristic to guide the
developers on finding if this is the case based on the decision making required in
the activities modeled. Although Tropos does not assume at the first hand that an
agent-oriented solution will be applied, it uses concepts of Artifitial Intelligence
(such as intentions) that are easier to be mapped to agent-oriented systems; (ii) it
uses whenever possible well-known modeling structures such as UML while MaSE
uses some isolated UML diagrams; and (iii) it enables the development of large
scale systems that use agents only in critical and complex tasks while maintain-
ing the simplicity of ready to use technology on other less critical tasks.

5 Conclusion and Future Work

Agent-oriented software development is a growing research area since there are
no standards for agent systems design and implementation. In spite of the lack of



www.manaraa.com

Developing a Conference Management System with MASUP: A Case Study 223

standards, there are many interesting works showing a methodological approach
for agent system development. This work presented a methodology which extends
RUP called MASUP to develop agent-oriented systems and a case study specially
chosen for its comparison with other methodologies found in the literature.

The organizational and coordination rules identification and tracing is done in
all phases of MASUP. The models produced in each activity of the methodology
are specified through successive refinements using use cases as the reference
to express the system requirements. The design model takes into account the
implementation infrastructure required to implement the solution using a multi-
agent approach.

The main contribution of this work is to present the methodology using a
reference case study and discussing its strengths and weaknesses to map all the
case studys requirements and organizational rules. MASUP is being extended
to use diagrams to represent agents organizational workflows and rules. A vi-
sual modeling tool is being developed to support MASUP usage and diagram
consistency over MASUP workflows.

Acknowledgments. This study was developed by the Intelligent Systems En-
gineering Group of PUCRS and partially financed by Dell Computers of Brazil
Ltd. with resources of Law 8.248/91.

References

1. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons Ltd,
Chichester (2002)

2. Jennings, N.R., Faratin, P., Johnson, M.J., O’Brien, P., Wiegand, M.E.: Using intel-
ligent agents to manage business processes. In: Proceedings of First International
Conference on The Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM 1996), London, pp. 345–360 (1996)

3. Zambonelli, F., Jeenings, N.R., Wooldridge, M.J.: Organizational Rules as an Ab-
straction for the Analysis and Design of Multi-Agent Systems. International Jour-
nal of Software Engineering and Knowledge Engineering 11, 303–328 (2001)

4. Bastos, R.M., Ribeiro, M.B.: Modeling Agent-Oriented Information Systems for
Business Processes. In: Third International Workshop on Software Engineering
for Large-Scale Multi-Agent Systems. 26th International Conference on Software
Engineering - Workshop, Edinburgh, pp. 90–97 (2004)

5. RUP - Rational Unified Process. RATIONAL Software Corporation. United States
(2002)

6. Bastos, R.M., Ribeiro, M.B.: MASUP: An Agent-Oriented Modeling Process for
Information Systems. In: Software Engineering for Multi-Agent Systems III: Re-
search Issues and Practical Applications, Springer, Berlin (2005)

7. DeLoach, S.: Modeling Organizational Rules in the Multi-agent Systems Engineer-
ing Methodology. In: Proceedings of the 15th Conference of the Canadian Society
for Computational Studies of Intelligence on Advances in Artificial Intelligence,
pp. 1–15 (2002)

8. Odell, J., Parunak, H.V.D., Bauer, B.: Representing Agent Interaction Protocols
in UML. In: Agent-Oriented Software Engineering. 22nd International Conference
on Software Engineering (ISCE), pp. 121–140. Springer, Heidelberg (2001)



www.manaraa.com

224 D. Santos, M.B. Ribeiro, and R. Bastos

9. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelli-
gent Agents. In: Proceedings of the the Third International Workshop on Agent-
Oriented Software Engineering (AAMAS 2002) (2002)

10. Castro, J.F.B., Mylopoulos, J., Kolp, M.: Developing Agent-Oriented Information
Systems for the Enterprise. In: Enterprise Information Systems, 2nd edn., Kluwer
Academic Publishers, Dordrecht (2001)

11. Deloach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering.
The International Journal of Software Engineering and Knowledge Engineering 11
(2001)

12. IBM Developer Works (Last access in March 14, 2007),
http://www-128.ibm.com/developerworks/rational/library/2802.html

http://www-128.ibm.com/developerworks/rational/library/2802.html


www.manaraa.com

Author Index

Asnar, Yudistira 118

Bastos, Ricardo 212
Berger, Helmut 103
Bogdanovych, Anton 103

Dam, Khanh Hoa 132
DeLoach, Scott A. 1, 168
Dignum, Frank 73
Dignum, Virginia 73

Esteva, Marc 103

Garcia-Ojeda, Juan C. 1
German, Ernesto 88
Giorgini, Paolo 118
Gonzalez-Palacios, Jorge 16
Groth, Paul 31

Luck, Michael 16, 31, 164

Miles, Simon 31
Morandini, Mirko 44, 182
Moreau, Luc 31
Munroe, Steve 31

Nguyen, Duy Cu 58, 182

Oyenan, Walamitien H. 1

Padgham, Lin 73, 164, 197
Penserini, Loris 44
Perini, Anna 44, 58, 182

Ribeiro, Marcelo Blois 212
Robby 1

Santos, Danilo 212
Sheremetov, Leonid 88
Siena, Alberto 182
Sierra, Carles 103
Simoff, Simeon 103
Sterling, Leon 147
Susi, Angelo 44, 182

Taveter, Kuldar 147
Thangarajah, John 73, 197
Tonella, Paolo 58

Valenzuela, Jorge 1

Winikoff, Michael 73, 132, 197

Zannone, Nicola 118


	Title Page
	Preface
	Organization
	Table of Contents
	O-MaSE: A Customizable Approach to Developing Multiagent Development Processes
	Introduction
	Background
	O-MaSE Process Framework
	Metamodel
	Method Fragments
	Guidelines

	WMD Search Example
	Basic O-MaSE Process
	Extended O-MaSE Process

	Conclusions and Future Work

	Extending Gaia with Agent Design and Iterative Development
	Introduction
	Gaia Overview
	Roles
	Interactions
	Organisations
	Phases

	Agent Design
	Models
	Activities
	Example
	Agents that Play More Than One Role

	Iterative Development
	First Iteration
	Second Iteration

	Conclusions

	AgentPrIMe: Adapting MAS Designs to Build Confidence
	Introduction
	AgentPrIMe
	Causality in Multi-Agent Systems
	Causality within Agents
	Causality between Agents
	The Wrapper Adaptation
	Provenance

	Designing for Accuracy
	Design Levels
	Corroboration
	The Corroboration Adaptation
	The Third-Party Storage Adaptation
	The Accountability Adaptation

	Applying AgentPrIMe
	Conclusions

	Refining Goal Models by Evaluating System Behaviour
	Introduction
	Background
	Conceptual Framework
	Tool Supported Framework

	Experimental Setting and Evaluation
	Experimental Setting
	Results and Discussion

	Related Work
	Conclusions and Future Work

	A Goal-Oriented Software Testing Methodology
	Introduction
	Background and Related Work
	Background on Tropos
	Related Work

	The Methodology
	A Process Model for Goal-Oriented Testing
	Testing Types and Goal Types
	Test Suites Derivation
	Test Suites Structure
	Agent Testing Tool

	An Example
	Test Suites Derivation for BibFinder
	Testing BibFinder Against the Derived Test Suites

	Conclusion and Future Work

	Open Agent Systems ???
	Introduction
	Application Scenario
	System Architecture
	Agents and Roles
	Message Compatibility
	Protocol Compatibility
	Related Work
	Discussion and Future Work

	An Agent Framework for Processing FIPA-ACL Messages Based on Interaction Models
	Introduction
	Framework for Agent Interaction
	Basic Definitions of the Interaction Framework
	Interaction Architecture

	Implementation of the Framework within the CAPNET Platform
	Implementation of Agent Interaction Architecture
	Implementation of Interaction Models
	Example of the Validation Process

	Discussion and Related Work
	Conclusions

	A Methodology for Developing Multiagent Systems as 3D Electronic Institutions
	Introduction
	3D Electronic Institutions
	3D Electronic Institutions Methodology
	Deployment
	Conclusion

	Reasoning About Risk in Agent’s Deliberation Process: A Jadex Implementation
	Introduction
	Unmanned Aerial Vehicle
	Tropos Goal-Risk Model
	Framework Realization
	Related Work
	Conclusions and Remarks

	Generation of Repair Plans for Change Propagation
	Introduction
	A Running Example
	Architectural Overview
	Generating Repair Plan Types
	Completeness and Correctness
	Example

	Related Work
	Conclusions and Future Work

	An Expressway from Agent-Oriented Models to Prototypes
	Introduction
	Computation Independent Modelling
	Platform Independent Design
	Interaction Design
	Information Design
	Behaviour Design

	Platform Specific Design and Rapid Prototyping
	Related Work and Conclusions 

	Introduction to AOSE Tools for the Conference Management System
	Introduction
	The Conference Management System Example
	Comparison of Methodologies and Tools
	The AOSE 2007 Session

	Developing a Multiagent Conference Management System Using the O-MaSE Process Framework
	Introduction
	O-MaSE Process
	Modeling CMS in O-MaSE
	Goal Model
	Organization Model
	Role Model
	Agent Class Model
	Protocol Models
	Agent Plan Models

	Conclusion and Future Work

	Tool-Supported Development with Tropos: The Conference Management System Case Study
	Introduction
	Tropos Development Process and Tools
	TAOM4e and Code Generation Functions
	eCAT

	Requirements Analysis
	Design
	Code and Test Suites Generation
	Discussion
	Conclusion and Future Work

	The Prometheus Design Tool – A Conference Management System Case Study
	Introduction
	Prometheus Design Tool Overview
	System Specification
	Architectural Design
	Detailed Design
	Features
	Future Work

	Developing a Conference Management System with the Multi-Agent Systems Unified Process: A Case Study
	Introduction
	Multi-Agent Systems Unified Process (MASUP)
	Modeling Organizational Rules in MASUP
	Requirements Workflow
	Analysis Workflow
	Design Workflow

	Discussion
	Conclusion and Future Work

	Author Index



